Evaluating Machine Learning Models for Predicting Prostate Cancer Progression Using Lifestyle Factors: A Systematic Review and Meta-Analysis

Authors

  • Ernest E. Onuiri Department of Computer Science, School of Computing, Babcock University, Nigeria
  • Oluwabamise J. Adeniyi Department of Computer Science, School of Computing, Babcock University, Nigeria

DOI:

https://doi.org/10.70112/ajeat-2024.13.1.4241

Keywords:

AUC (Area Under the Curve), Lifestyle Factors, Logistic Regression, Machine Learning, Multi-Layer Perceptron, Precision Oncology, Prostate Cancer, Support Vector Machine

Abstract

This systematic review and meta-analysis evaluated the performance of machine learning models in predicting prostate cancer progression using lifestyle factors as predictive biomarkers to improve prognostic accuracy. Various models were analyzed, including Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Multi-Layer Perceptron (MLP), and Convolutional Neural Networks (CNN). These models were applied to identify diagnostic and prognostic biomarkers and to enhance the forecasting of prostate cancer progression. The meta-analysis demonstrated high predictive effectiveness across models, with mean performance metrics of 0.901 AUC (Area Under the Curve), 0.914 F1 Score, 0.889 accuracy, and 0.914 sensitivity. Among the models, the Multi-Layer Perceptron (MLP) emerged as the most effective, achieving 97% accuracy and an AUC of 95.8%. These findings underscore the potential of machine learning to integrate lifestyle factors as predictive biomarkers, advancing precision oncology in prostate cancer care.

References

R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer Statistics, 2021,” CA. Cancer J. Clin., vol. 71, no. 1, pp. 7-33, 2021, doi: 10.3322/caac.21654.

R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, “Cancer Statistics, 2023,” CA. Cancer J. Clin., vol. 73, no. 1, pp. 17-48, 2023, doi: 10.3322/caac.21763.

M. Litwin, H. T.-Jama, and undefined, “The diagnosis and treatment of prostate cancer: a review,” JAMA, vol. 317, no. 24, pp. 2532-2542, 2017. [Online]. Available: https://jamanetwork.com/journals/jama/article-abstract/2633921. [Accessed: Mar. 11, 2024].

S. Kenfield, M. Stampfer, and E. G.-J. of C., “Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study,” J. Clin. Oncol., vol. 29, no. 6, pp. 726-732, 2011. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056656/. [Accessed: Mar. 11, 2024].

S. F. Peisch, E. L. Van Blarigan, J. M. Chan, M. J. Stampfer, and S. A. Kenfield, “Prostate cancer progression and mortality: a review of diet and lifestyle factors,” World J. Urol., vol. 35, no. 6, pp. 867-874, Jun. 2017, doi: 10.1007/S00345-016-1914-3.

C. Leitão, B. Matos, F. Roque, M. T. Herdeiro, and M. Fardilha, “The Impact of Lifestyle on Prostate Cancer: A Road to the Discovery of New Biomarkers,” J. Clin. Med., vol. 11, no. 10, pp. 1-17, May 2022, doi: 10.3390/jcm11102925.

Z. Dovey, A. Horowitz, and N. Waingankar, “The influence of lifestyle changes (diet, exercise and stress reduction) on prostate cancer tumour biology and patient outcomes: A systematic review,” BJUI Compass, vol. 4, no. 4, pp. 385-416, Jul. 2023, doi: 10.1002/bco2.237.

M. Rivera-Izquierdo et al., “Obesity as a risk factor for prostate cancer mortality: A systematic review and dose-response meta-analysis of 280,199 patients,” Cancers (Basel), vol. 13, no. 16, p. 4169, Aug. 2021, doi: 10.3390/cancers13164169.

J. P.-C. opinion in urology, “Lifestyle factors, benign prostatic hyperplasia, and lower urinary tract symptoms,” Current Opin. Urol., vol. 25, no. 1, pp. 1-6, 2011. [Online]. Available: https://journals.lww. com/co-urology/fulltext/2011/01000/lifestyle_factors,_benign_ prostatic_hyperplasia,.2.aspx. [Accessed: Mar. 11, 2024].

J. A. Schalken et al., “Molecular prostate cancer pathology: Current issues and achievements,” Scand. J. Urol. Nephrol., vol. 39, no. 216, pp. 82-93, May 2005, doi: 10.1080/03008880510030950.

A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, “A guide to deep learning in healthcare,” Nat. Med., vol. 25, no. 1, pp. 24-29, 2019, doi: 10.1038/s41591-018-0316-z.

O. S. Tătaru et al., “Artificial intelligence and machine learning in prostate cancer patient management-current trends and future perspectives,” Diagnostics, vol. 11, no. 2, pp. 1-20, 2021, doi: 10.3390/diagnostics11020354.

S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence and machine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391-403, May 2019, doi: 10.1038/s41585-019-0193-3.

O. Ernest, O. Komolafe, S. O., and A. Oludele, “Ontology: A Case for Disease and Drug Knowledge Discovery,” Commun. Appl. Electron., vol. 5, no. 9, pp. 6-13, 2016, doi: 10.5120/cae2016652362.

M. A. Dall’era et al., “Active surveillance for early-stage prostate cancer: review of the current literature,” Cancer, vol. 112, no. 8, pp. 1650-1659, Apr. 2008, doi: 10.1002/cncr.23373.

G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. M. Moons, “Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement,” Ann. Intern. Med., vol. 162, no. 1, pp. 55-63, Jan. 2015, doi: 10.7326/M14-0697.

A. A. Adegbenjo et al., “Design and Analysis of an Automated IoT System for Data Flow Optimization in Higher Education Institutions,” J. Eur. des Syst. Autom., vol. 56, no. 5, pp. 889-897, 2023, doi: 10.18280/jesa.560520.

M. Amir-Behghadami and A. Janati, “Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews,” Emerg. Med. J., vol. 37, no. 6, pp. 387-387, Jun. 2020, doi: 10.1136/emermed-2020-209567.

O. Akande et al., “A Systematic Review of Machine Learning Prediction Models for Colorectal Cancer Patient Survival Using Clinical Data and Gene Expression Profiles,” Revue d’Intelligence Artif., 2023, doi: 10.18280/ria.370520.

“HubMeta - Systematic Review and Meta Analysis Cloud Platform.” [Online]. Available: https://hubmeta.com/. [Accessed: Mar. 11, 2024].

N. R. Haddaway, M. J. Page, C. C. Pritchard, and L. A. McGuinness, “PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis,” Campbell Syst. Rev., vol. 18, no. 2, p. e1230, Jun. 2022, doi: 10.1002/cl2.1230.

D. Moher et al., “Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement,” Syst. Rev., vol. 4, no. 1, pp. 148-160, 2015, doi: 10.1186/2046-4053-4-1.

D. Moher et al., “Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement,” PLoS Med., vol. 6, no. 7, 2009, doi: 10.1371/journal.pmed.1000097.

Y. Tong, Z. Tan, P. Wang, and X. Gao, “A Machine Learning Method for Predicting Biomarkers Associated with Prostate Cancer,” vol. 28, no. 12, 2023.

S. Yeh, Y. Chung, and B. C.-Molecules, “Investigating the Role of Obesity in Prostate Cancer and Identifying Biomarkers for Drug Discovery: Systems Biology and Deep Learning Approaches,” Molecules, vol. 27, no. 3, p. 900, 2022. [Online]. Available: https://www.mdpi.com/1420-3049/27/3/900. [Accessed: Feb. 22, 2024].

R. Toth, H. Schiffmann, C. Hube-Magg, and F. B.-C., “Random forest-based modelling to detect biomarkers for prostate cancer progression,” Springer, 2019. [Online]. Available: https://link.springer.com/article/10.1186/s13148-019-0736-8. [Accessed: Feb. 22, 2024].

S. Y. Shin et al., “A Boolean-based machine learning framework identifies predictive biomarkers of HSP90-targeted therapy response in prostate cancer,” Front. Mol. Biosci., vol. 10, pp. 1-16, Jan. 2023, doi: 10.3389/fmolb.2023.1094321.

C. Lee, A. Light, and E. S. Saveliev, “Developing machine learning algorithms for dynamic estimation of progression during active surveillance for prostate cancer,” Nat. Comput. Sci., 2022, doi: 10.1038/s41746-022-00659-w.

S. Chen et al., “Machine Learning-Based Models Enhance the Prediction of Prostate Cancer,” Front. Oncol., vol. 12, Jul. 2022, doi: 10.3389/fonc.2022.941349.

E. Erdem, F. B.-A. B. ve T. Dergisi, “A comparison of various supervised machine learning techniques for prostate cancer prediction,” DergiPark, 2021. [Online]. Available: https://dergipark.org.tr/en/pub/ejosat/issue/59648/802810. [Accessed: Feb. 23, 2024].

J. Dai, “Analyses of Lifestyle and Environmental Factors for Cancer Prevention using Deep Learning and Conventional Machine Learning from UK Biobank Data,” 2020.

J. Lee et al., “Machine learning approaches for the prediction of prostate cancer according to age and the prostate-specific antigen level,” KJUO, 2024. [Online]. Available: http://www.kjuo.or.kr/journal/view.php?number=427. [Accessed: Feb. 16, 2024].

O. C. Ngige, F. Y. Ayankoya, J. A. Balogun, E. Onuiri, C. Agbonkhese, and F. A. Sanusi, “A dataset for predicting Supreme Court judgments in Nigeria,” Data Brief, vol. 50, p. 109483, 2023, doi: 10.1016/j.dib.2023.109483.

D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation,” J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37-63, 2011. [Online]. Available: https://www.researchgate.net/publication/228529307.

K. S., “Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research,” J. Clin. Pathol., vol. 62, no. 1, pp. 1-6, 2009. [Online]. Available: https://jcp.bmj.com/content/62/1/1.short.

P. Baldi, S. Brunak, Y. Chauvin, and C. A.-, “Assessing the accuracy of prediction algorithms for classification: an overview,” Bioinformatics, vol. 16, no. 5, pp. 412-424, 2000. [Online]. Available: https://academic.oup.com/bioinformatics/article-abstract/16/5/412/192336.

R. Parikh, A. Mathai, S. Parikh, G. C. Sekhar, and R. Thomas, “Understanding and using sensitivity, specificity and predictive values,” Indian J. Ophthalmol., vol. 56, no. 1, pp. 45-50, 2008, doi: 10.4103/0301-4738.37595.

Downloads

Published

28-04-2024

How to Cite

Onuiri, E. E., & Adeniyi, O. J. (2024). Evaluating Machine Learning Models for Predicting Prostate Cancer Progression Using Lifestyle Factors: A Systematic Review and Meta-Analysis. Asian Journal of Engineering and Applied Technology, 13(1), 44–56. https://doi.org/10.70112/ajeat-2024.13.1.4241