
Asian Journal of Engineering and Applied Technology
ISSN: 2249-068X (P) Vol. 6 No. 1, 2017, pp.34-39

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajeat-2017.6.1.812

Reconfigurable Real Time Signal Capturing through FPGA
B.H.K Bhagat Kumar1 and S Khadar Bhasha2

1,2Department of ECE
Aditya Engineering College

Surampalem, East Godavari, Andhra Pradesh, India
E-mail: harikumar470@gmail.com

khadarbasha421@gmail.com

Abstract – Today all communication systems are prototyped on
FPGAs before sending them for ASIC backend and fabrication.
On other side the FPGAs with million gate logic densities and
embedded block RAMs allowed the high speed signal
capturing and storage for real time analysis. Performing
various functions on the captured data allows high speed
spectrum analysis. These two allow the prototyping of complex
communication system on FPGA and real time analysis of
implemented blocks. There are several types of interface
methods possible to communicate the FPGA with a
computer.. In this paper novel techniques are implemented for
capturing and analyzing the signals of any design on FPGA
with configurable UART interface. VHDL will be used for
implementation of necessary modules such as block memory,
capture FSM, triggering logic and UART interface. Necessary
scripts will be developed to generate the synthesizable VHDL
code as per the requirements of user. The captured data will be
sent to PC using UART. Xilinx ISE will be used for systhesis
and performance analysis.
Keywords: Capture FSM, Xilinx ISE, UART

I. INTRODUCTION

Performing signal processing functions on the captured data
allow high speed spectrum analysis. These two allow the
prototyping of complex communication system on FPGA
and real time analysis of implemented blocks. There are
several types of interface methods possible to communicate
the FPGA with a computer. Because of low weight and easy
availability of UART on several FPGA boards, it is
appropriate option for transferring the capture data. In this
dissertation , we have focused on how the signals are
captured using FSM and they are bringing back on the
system for testing the design on FPGA IC.UART is used
here for interfacing with the system. An efficient module for
the proposed architecture is implemented in VHDL on
FPGA. The simulation results of the top blocks are shown.
The design is reconfigurable for the different captured
signals.

Fig.1 System Response

 Design

Data

Capture
Module

Communication
Module

34AJEAT Vol.6 No.1 January-June 2017

(Received 10 April 2017; Accepted 15 May 2017; Available online 22 May 2017)

mailto:khadarbasha421@gmail.com

The above diagram clearly explains the view of the total
project. After implementing any design on an FPGA chip,
our project captures the selected data. Then by means of a
communication module we can see the required data on a
computer monitor.

Fig.2 Block diagram of System Response

This paper presents the combination of a dynamic FPGA
probe, which enables routing of signal groups within an
FPGA to a logic analyzer for measurement through a small
number of physical package pads, with an FFT-based vector
signal analysis software package. This combination
provides simultaneous measurement of time domain,
frequency spectrum, and modulation quality on digital
signals inside an FPGA. It also provides the quick selection
of various internal nets for signal analysis without time
consuming redesigns of the FPGA. Field Programmable
Gate Arrays (FPGAs) are in widespread use for digital
signal processing (DSP) in wireless, aerospace, and defense
applications. Their programmability enables designers to
build early prototype systems while specifications are still
changing, as well as to support multiple communication
technologies with a single hardware design. Their
increasing performance enables digital processing of
increasingly wider bandwidths, improving signal quality
while reducing power consumption and material cost. As an
increasing portion of a transceiver is digital, the number of
probe points for analog spectrum and vector signal analysis
is decreasing. Digital signal processing systems possess the
ability to create near-perfect signal quality due to the lack of
noise and nonlinearities associated with analog signal
processing. However, tradeoffs are constantly made in
signal quality in DSP systems to meet requirements in
system cost, power consumption, and time to market. For
this reason, signal analysis on digital components and sub-
components is needed to view the relative impact of design
tradeoffs on signal quality.

II. ANALYSIS AND DESIGN

This chapter provides brief overview of capture module,
communication module. Capture module consists of capture
state machine and sample counter. Communication module
consists of FIFO and UART

A.Block Level Implementation

 Fig.3 Capture module

Capture module is the one which is used to capture the data
from an implemented design in which the signals are to be
observed. A separate behavioral logic is developed to meet
this requirement. It takes an 8 bit input data and holds it for
some time till it stored in FIFO.

Finite state machine (FSM) or simply a state machine is a
model of behavior composed of a finite number of states,
transitions between those states, and actions. A finite state
machine is an abstract model of a machine with a primitive
internal memory. At their simplest, are models of behaviors
of a system or a complex object, with a limited number of
defined conditions or modes, where mode transitions are
changes with circumstances. Since the state machine needs
to remember the past inputs, a memory element is required.
In hardware the memory element is generally flip-flop.
Physically memory is always finite, and in almost every
practical machine a summary of inputs is sufficient for
generating output. It means that the number of states in the
machine is going to be finite. Hence, it is named Finite State
Machine (FSM).

There are a number of abstract modeling techniques that
may help or spark understanding in the definition and
design of a finite state machine, most come from the area of
design or mathematics.

35 AJEAT Vol.6 No.1 January-June 2017

Reconfigurable Real Time Signal Capturing through FPGA

Fig.4 A possible FSM-CS implementation

Hierarchical Task Analysis (HTA): Though it does not look
at states, HTA is a task decomposition technique that looks
at the way a task can be split into subtask, and the order in
which they are performed.

B.Asynchronous FIFO Design

Fig.5 FIFO read & write pointers.

FIFO is an acronym for First In, First Out. FIFO is a
memory element and also provides synchronization between
the input and output data. To reach this requirement of
synchronization we need a separate mechanism. In general
writing into FIFO and reading from the FIFO may be of
different speeds namely W-CLK and R-CLK respectively.
We are implementing the FIFO with a special architecture
according to the requirement. This expression describes the
principle of a queue processing technique or servicing
conflicting demands by ordering process by first-come,
first-served (FCFS) behavior: what comes in first is handled
first, what comes in next waits until the first is finished, etc.
Thus it is analogous to the behavior of persons queuing
where the persons leave the queue in the order they arrive,
or waiting one's turn at a traffic control signal.

For FIFOs of non-trivial size a dual-port SRAM is usually
used where one port is used for writing and the other is used
for reading. A synchronous FIFO is a FIFO where the same
clock is used for both reading and writing. An asynchronous
FIFO uses different clocks for reading and writing.
Asynchronous FIFOs introduce metastability issues.
Common implementation of an asynchronous FIFO uses a
Gray code (or any unit distance code) for the read and
writes pointers to ensure reliable flag generation.

C. Asynchronous FIFO Pointers

In order to understand FIFO design, one needs to
understand how the FIFO pointers work. The write pointer
always points to the next word to be written; therefore, on
reset, both pointers are set to zero, which also happens to be
the next FIFO word location to be written. On a FIFO-write
operation, the memory location that is pointed to by the
write pointer is written, and then the write pointer is
incremented to point to the next location to be written.
Similarly, the read pointer always points to the current FIFO

word to be read. Again on reset, both pointers are reset to
zero, the FIFO is empty and the read pointer is pointing to
invalid data because the FIFO is empty and the empty flag
is asserted. As soon as the first data word is written to the
FIFO, the write pointer increments, the empty flag is
cleared, and the read pointer that is still addressing the
contents of the first FIFO memory word, immediately drives
word, the receiver would clock once to output the data word
from the FIFO, and clock a second time to capture the data
word into the receiver. That would be needlessly inefficient.

The FIFO is empty when the read and write pointers are
both equal. This condition happens when both pointers are
reset to zero during a reset operation, or when the read
pointer catches up to the write pointer, having read the last
word from the FIFO.

That first valid word onto the FIFO data output port, to be
read by the receiver logic. The fact that the read pointer is
always pointing to the next FIFO word to be read means
that the receiver logic does not have to use two clock
periods to read the data word.

A FIFO is full when the pointers are again equal, that is,
when the write pointer has wrapped around and caught up to
the read pointer. This is a problem. The FIFO is either
empty or full when the pointers are equal, but which? One
design technique used to distinguish between full and empty
is to add an extra bit to each pointer. When the write pointer
increments previous final FIFO address, the write pointer
will increment the unused MSB while setting the rest of the
bits back to zero as shown in Fig2.4.The same is done with
the read pointer. If the MSBs of the two pointers are
different, it means that the write pointer has wrapped one
more time that the read pointer. If the MSBs of the two
pointers are the same, it means that two pointers have
wrapped the same number of times. Using n-bit pointers
where (n-1) is the number of address bits required to access
the entire FIFO memory buffer; the FIFO is empty when
both pointers, including the MSBs are equal. And the FIFO
is full when both pointers, except MSBs are equal. The
FIFO design uses n-bit pointers for a FIFO with 2(n-1)
write-able locations to help handle full and empty
conditions.

36AJEAT Vol.6 No.1 January-June 2017

B.H.K Bhagat Kumar and S Khadar Bhasha

Fig.6 Block diagram for FIFO

III. BINARY FIFO CONSIDERATIONS

Trying to synchronize a binary count value from one clock
domain to another is problematic because every bit of an n-
bit counter can change simultaneously for example 7->8 in
binary numbers is 0111->1000, all bits changed. One
approach to the problem is sample and hold periodic binary
count values in a holding register and pass a synchronized
ready signal to the new clock domain. When the ready
signal is recognized, the receiving clock domain sends back
a synchronized acknowledge signal to the sending

Clock domain. A sampled pointer must not change until an
acknowledge signal is received from the receiving clock
domain. A count-value with multiple changing bits can be
safely transferred to a new clock domain using this
technique. Upon receipt of an acknowledge signal, the
sending clock domain has permission to clear the ready
signal and re-sample the binary count value.

Fig.7 FIFO full and empty conditions

Using this technique, the binary counter values are sampled
periodically and not the entire binary counter values can be
passed to a new clock domain. The question is, do we need
to be concerned about the case where a binary counter
might continue to increment and overflow or underflow the
FIFO between sampled counter values? The answer is no
FIFO full occurs when the write pointer catches up to the
synchronized and sampled read pointer. The synchronized
and sampled read pointer might not reflect the current value
of the actual read pointer but the write pointer will not try to
count beyond the synchronized read pointer value.
Overflow will not occur .FIFO empty occurs when the read
pointer catches up to the synchronized and sampled write
pointer. The synchronized and sampled write pointer might
not reflect the current value of the actual write pointer but
the read pointer will not try to count beyond the
synchronized write pointer value. Underflow will not occur

.A common approach to FIFO counter-pointers is to use
Gray code counters. Gray codes only allow one bit to
change for each clock transition, eliminating the problem
associated with trying to synchronize multiple changing
signals on the same clock edge.

A.Handling Full & Empty Conditions

Exactly how FIFO full and FIFO empty are implemented is
design-dependent. In the FIFO design , assumes that the
empty flag will be generated in the read-clock domain to
insure that the empty flag is detected immediately when the
FIFO buffer is empty, that is, the instant that the read
pointer catches up to the write pointer (including the pointer
MSBs). Similarly assumes that the full flag will be
generated in the write-clock domain to insure that the full
flag is detected immediately when the FIFO buffer is full,
that is, the instant that the write pointer catches up to the
read pointer (except for different pointer MSBs).

B.Generating Empty

As shown in Figure 3.5, the FIFO is empty when the read
pointer and the synchronized write pointer are equal. The
empty comparison is simple to do. Pointers that are one bit
larger than needed to address the FIFO memory buffer are
used. If the extra bits of both pointers (the MSBs of the
pointers) are equal, the pointers have wrapped the same
number of times and if the rest of the read pointer equals the
synchronized write pointer, the FIFO is empty.

C.Generating Full

The full comparison is not as simple to do as the empty
comparison. Pointers that are one bit larger than needed to
address the FIFO memory buffer are still used for the
comparison, but simply using Gray code counters with an
extra bit to do the comparison is not valid to determine the
full condition. The problem is that a Gray code is a
symmetric code except for the MSBs.

IV. UART

This provides brief overview of communication block and
its components UART, timer block, multiplexer. The
Universal Asynchronous Receiver/Transmitter (UART)
controller is the key component of the serial
communications subsystem of a computer. The UART takes
bytes of data and transmits the individual bits in a sequential
fashion. Serial transmission of digital information (bits)
through a single wire or other medium is much more cost
effective than parallel transmission through multiple wires.
The primary functions of the UART are to perform serial-
to-parallel and parallel-to-serial conversion of data and to
perform error detection by inserting & checking parity bits
and to insert & detect start and stop bits.

37 AJEAT Vol.6 No.1 January-June 2017

Reconfigurable Real Time Signal Capturing through FPGA

 Fig.8 Communication module

In this module we have two blocks called a timer or clock
divider and a UART block. Clock divider generates 8
different clock frequencies which are generally used in
computer displays and monitors. One of the clocks is
selected to run the UART by means of a Multiplexer and
with respect to the requirement. Input and output data are
received and transmitted with respect to this clock

V. SIMULATION RESULTS

The simulation results are obtained upon execution of the
VHDL files that give the model for finite state machine
(FSM), Multiplexer, first in first out, UART on Model-SIM
simulator tool. The waveforms of each module are
discussed

A.Clock Generation

In The above simulation Fig5.1.2 we can see the various
clk's generated by using 50MHz clk. We have generated
eight different clk speeds which are very useful when data is
transmitted from the Transmission block. Generally systems
transmit or receive data with 9.6 kbps speed and we are
using different speeds less or more than 9.6 kbps.

Fig.9 Simulation Result of clock generation

B.Clock Selection Mux

Fig.10 Simulation Result of clock selection mux

Here we have to select any one clk from the generated clks.
We are using 8:1 multiplexer which selects the data from
input with respective selection lines.

C.Communication Block: UART

Fig.11 Simulation Result of UART

38AJEAT Vol.6 No.1 January-June 2017

B.H.K Bhagat Kumar and S Khadar Bhasha

D.Top level RSC

The following figure 5.4 gives the wave form that depicts the performance of Top level RSC.

Fig.12 Simulation Result of Top module

E.RSC FPGA Implementation

The different blocks of the RSC processor are sybthesized for FPGA implementation. Xilinx project navigator tool is used for
this purpose. The design is targeted to Xilinx FPGA Board.

F.RSC Internal FPGA Routed View

Fig.13 FPGA routed view

VI. CONCLUSION

In this paper, Reconfigurable Signal Capture concept is
studied. The RSC architecture was designed and various
blocks of RSC are modeled in VHDL. The design is
functionally verified by simulating the code in ModelSim
from Mentor Graphics. The FPGA synthesis is done using
Xilinx ISE tool and signals are transmitted through the
UART. To make measurement and debug easier and more
robust, a new integration between commercial Vector
Signal Analysis software and the logic analyzer is used.

REFERENCES

[1] Ken Voelker, "Apply Error Vector Measurements in
CommunicationsDesign", Microwaves & RF, December 1995,
pp. 143-152.

[2] Using Cadence SPW and Virtex-II FPGAs for DSP Design”,
XilinxXcell Journal Online,//www.xilinx.com/ esp/wireless/
rf/predistortion.htm.

[3] “vector signal analysis of digital baseband and if signals within
an FPGA” Proc. IEEE, 0-7803-9101-2/05.

[4] J. Bhasker, A VHDL primer, BS Publications, 2003
[5] Floyd, Digital fundamentals, 8th edition-, Pearson education,

2005
[6] Soc User guide, June, 2006, product version5.2.1

39 AJEAT Vol.6 No.1 January-June 2017

Reconfigurable Real Time Signal Capturing through FPGA

