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Abstract - In a standard RAG pipeline, source documents are 
split into smaller chunks, and embedding models generate 
vector representations for these chunks. The embeddings are 
stored in a vector database, which retrieves relevant chunks 
using vector similarity or keyword-based search. The retrieved 
chunks are then combined with the user query and passed to 
an LLM to generate the final response. Although effective, 
traditional RAG systems depend heavily on the choice of 
embedding model, retrieval method, and the number of 
retrieved chunks, all of which significantly impact accuracy 
and hallucination levels. Results show that the proposed RAG 
system significantly outperforms individual retrieval systems. 
It achieves a correctness score of 79.75% and a similarity score 
of 78.7%, surpassing all baseline RAG pipelines. Furthermore, 
experiments varying the number of retrieved chunks per 
retriever (from 1 to 10) reveal an interesting trend: 
performance peaks at several even-numbered retrieval counts, 
indicating local maxima in correctness and similarity when 
using even numbers of retrieved documents before applying 
Reciprocal Rank Fusion (RRF). Overall, this study 
demonstrates that combining multiple retrieval mechanisms 
with RRF yields more accurate, contextually aligned, and 
consistent outputs compared to traditional single-retriever 
RAG implementations. The proposed framework enhances 
RAG reliability without fine-tuning and provides empirically 
validated insights into the impact of retrieval volume on 
performance. The work repository is publicly maintained at: 
https://github.com/Surajxyz/RAG_PAPER 
Keywords: Retrieval-Augmented Generation (RAG), Vector 
Embeddings, Reciprocal Rank Fusion (RRF), Large Language 
Models (LLMs), Information Retrieval 

I. INTRODUCTION

Large Language Models (LLMs) are trained on extremely 
large corpora of text, allowing them to learn patterns, 
linguistic structures, factual knowledge, and reasoning 
capabilities. All of this acquired information is stored in the 
form of numerical parameters, commonly referred to as 
model weights. Once training is completed, the model’s 
knowledge becomes static; it is limited to the data available 
up to the point at which the training dataset was collected 
and processed. As a result, an LLM cannot inherently learn 
or update itself after deployment unless it undergoes another 
training or fine-tuning cycle. This creates a natural 
restriction: the model is unaware of events, facts, and 
domain-specific changes that occurred after its pretraining 

cutoff date. When users ask questions whose answers 
depend on information outside the model’s training 
knowledge, the model attempts to infer or “guess” the 
answer based on its learned patterns. This behavior often 
results in hallucinations, where the model confidently 
generates incorrect or fabricated responses. To mitigate 
hallucination, there are two primary approaches. The first is 
fine-tuning, where the model is trained further on new 
domain-specific datasets. Although fine-tuning can update 
the model’s knowledge and improve performance on 
specialized tasks, it has several drawbacks. Fine-tuning 
requires significant computational resources, making it 
expensive for large-scale or frequent updates. It also carries 
the risk of catastrophic forgetting, in which the model loses 
some of its original general knowledge while adapting to 
new data. Additionally, organizations may not always have 
access to the necessary GPU resources or permissions to 
perform fine-tuning on proprietary models. Because of these 
limitations, fine-tuning is often impractical, especially when 
the goal is simply to provide up-to-date or domain-specific 
factual information. 

The second and far more practical approach is Retrieval-
Augmented Generation (RAG). RAG avoids modifying the 
model’s weights and instead provides the model with the 
information it needs at query time. This makes RAG 
especially effective for scenarios in which the model must 
answer domain-specific questions or respond to information 
that has changed over time—before or after the model’s 
training cutoff. Rather than relying solely on the internal 
knowledge of the LLM, RAG allows the system to 
reference an external knowledge source, enabling the model 
to produce more accurate, grounded, and up-to-date 
answers. The RAG pipeline typically begins with data 
ingestion, where raw documents such as PDFs, webpages, 
manuals, or reports are processed into smaller, manageable 
text segments called chunks. Chunking is important because 
most embedding models and vector databases operate more 
efficiently on smaller, coherent pieces of text. Once chunks 
are created, each chunk is converted into an embedding 
vector using an embedding model, which may be an open-
source model such as Sentence Transformers or a closed-
source model such as OpenAI’s text-embedding series. The 
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chunk text and its corresponding embedding vector are then 
stored in a vector store, which supports fast similarity 
search. After ingestion, the second major RAG stage is 
retrieval and generation. When a user submits a query, the 
system generates an embedding for the query and performs 
a similarity search within the vector store. The goal is to 
retrieve the chunks that are most relevant to the user’s 
question. Retrieval can be based on pure vector similarity or 

supplemented with keyword-based methods such as BM25. 
The selected chunks form the context, which is combined 
with the user’s query and fed to the LLM. The LLM now 
has access to external factual information retrieved 
specifically for the query, enabling it to generate a more 
accurate and grounded response. This augmented approach 
significantly reduces hallucination and enhances the 
model’s reliability for real-world tasks. 

Fig.1 Chunk and Embedding Ingestion Process 

Fig.2 Retrieval of Relevant Context and Generation of an Answer 

II. RELATED WORK

Large Language Models (LLMs) cannot effectively capture 
low-popularity information or domain-specific knowledge 
that lies outside their pretraining datasets; therefore, fine-
tuning or Retrieval-Augmented Generation (RAG) is 
typically employed. In fine-tuning, a major challenge 
encountered is catastrophic forgetting, in which LLMs 
begin to lose previously learned knowledge. As a result, 
fine-tuning alone often performs worse compared to RAG 
or a combined fine-tuning and RAG approach, as reported 
by Soudani et al., [1]. In their study, English and Chinese 
datasets were used with different LLMs to evaluate RAG 
across four capabilities: noise robustness, negative rejection, 
information integration, and counterfactual robustness. For 
long-answer generation, Chen et al., [4] and Jiang et al., [5] 
proposed Forward-Looking Active Retrieval-Augmented 
Generation. RAG has been shown to support a wide range 
of tasks, including dialogue response generation, machine 

translation, language modeling, summarization, paraphrase 
generation, and data-to-text generation, as surveyed by Li et 
al., [6]. However, lower RAG accuracy is often attributed to 
suboptimal retrieval performance, which can result in 
irrelevant chunk selection. To address this issue, reranking 
techniques such as Reciprocal Rank Fusion (RRF) are 
employed. This approach, which is also adopted in our 
work, enhances retrieval effectiveness by generating similar 
queries and increasing retrieval depth. Rackauckas et al., [7] 
reported that the retrieval time using RRF is approximately 
1.77 times higher than that of traditional RAG. 

In addition, the FILCO technique filters retrieved contexts 
using a lexical approach and trains a filtering model to 
select the most relevant chunks for generation, as proposed 
by Wang et al., [12]. Retrieval evaluation has also been 
explored by Salemi et al., [2] through the introduction of 
eRAG. Their findings indicate that retrieval accuracy 
decreases when selected chunks originate from the middle 
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of a document and improves when chunks are selected from 
the beginning or end. This phenomenon, referred to as the 
“loss in the middle,” was identified by Liu et al., [8]. 
Beyond vector databases, some studies employ graph-based 
databases in which data are represented as nodes and edges, 
with nodes storing content and edges representing 
relationships. When graphs are used as the retrieval 
backend, the approach is referred to as GraphRAG or 
LightRAG, as described by Peng et al., [9], Han et al., [10], 
and Guo et al., [14]. For large document collections, 
LongRAG has been proposed, leveraging long-context 
window generation models to achieve significantly 
improved performance, as demonstrated by Jiang et al., 
[13]. For RAG evaluation, the RAGAS framework has been 
introduced; however, in some cases, it produces NaN values 
when the LLM fails to generate scores. Consequently, the 
OpenEvals library is used instead of RAGAS in this work, 
following the observations of Es et al., [21]. 

III. METHODOLOGY

In this paper, we construct a dataset consisting of 20 
questions and corresponding ground-truth answers, 
randomly extracted from a 603-page PDF document. This 
PDF is ingested into the RAG pipeline, where it is 
segmented into chunks of 500 tokens each. Each chunk is 
represented as a document in which the page_content field 
contains the chunk text and the metadata field includes the 
chunk_id and source information (e.g., Document ( page_ 
content="chunk content", metadata = { " source": "pdf", 
"chunk_id": 0})). Each document is stored in a FAISS-
based vector store using different embedding models, 
namely text-embedding-3-small, text-embedding-3-large, 
and all-mpnet-base-v2. Each embedding model is used to 
construct a traditional RAG pipeline. In addition, a fourth 
RAG pipeline is implemented using BM25 retrieval, which 
performs keyword-based search without a vector store. 

Fig.3 Our RAG Technique with Four Retrievals and Reciprocal Rank Fusion 

Across all four traditional RAG pipelines, gpt-3.5-turbo is 
used as the common generation model. In this work, we 
further introduce a RAG framework that integrates all the 

retrieval methods described above. Each retriever generates 
four candidate chunks, after which Reciprocal Rank Fusion 
(RRF) is applied to assign a score to each retrieved chunk 
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based on its rank across the individual retrieval results. The 
chunk with the highest aggregated score is then selected as 
context for answer generation using gpt-3.5-turbo. The 
dataset is evaluated using the five RAG pipelines described 
above, resulting in five tables containing the question, 
ground truth, retrieved context, and generated answer. 
These outputs are subsequently evaluated using the 
OpenEvals library in terms of correctness, conciseness, 
hallucination, and similarity, with gpt-4o-mini serving as the 
evaluation model. In the RRF process, a score is assigned to 
each unique document or context appearing in the four 
retrieval result sets. The final score for a document is 
computed as the sum of the reciprocals of its ranks across 
the retrieval sets in which it appears. The document or 
chunk with the highest total score is selected for answer 
generation, as defined by the RRF scoring formula. 

 
SCORE (Retrieved Doc) =  ∑ 1

(rank+60)
4
1   

 
Note: If the document or context is not present in a retrieved 
set, a value of zero is added to the equation. 
 

IV. RESULTS AND DISCUSSION 
 

If the number of contexts retrieved from each retriever 
varies from 1 to 10 in our RAG, where OUR RAG 10 
means the RAG used has four retrievers and the output of 
each is 10, which are passed to the RRF technique and 
extract one context having the highest score for generation.  
 

 
TABLE I EVALUATION METRICS FOR ALL FIVE RAGS 

Evaluation Metrics Correctness Conciseness Hallucination Similarity 
RAG contains BM25 retriever with one context for the generation  71 88.25 88.5 74.05 
RAG contains text-embedding-3-large retriever with one context 
for the generation 75.25 85.99 95.5 76.7 

RAG contains text-embedding-3-small retriever with one context 
for the generation 74.5 86 86.5 72.75 

RAG contains all-mpnet-base-v2 retriever with one context for the 
generation 69 87 73 72.15 

OUR RAG with all four retrievers with four contexts each, and the 
RRF technique which gives one context for generation  79.75 83.49 90 78.7 

 
TABLE II VARIATION OF EVALUATION METRICS 

  Correctness Conciseness Hallucination Similarity 

OURRAG10 78 82.25 96 76.1 

OUR RAG 9 78.24 87.74 96.5 80.2 

OUR RAG 8 79.25 89.25 91.75 75.9 

OUR RAG 7 76.5 89 88.5 76.25 

OUR RAG 6 76.25 83.24 94 76.4 

OUR RAG 5 52.75 20.5 68.5 69.4 

OUR RAG 4 79.75 83.49 90 78.7 

OUR RAG 3 73.25 87.25 96 74.05 

OUR RAG 2 74.75 81 95.5 77.5 

OUR RAG 1 71.25 90.24 85.24 73.85 
 
After obtaining the output files from all RAG pipelines, 
each containing the 20 questions, ground truth answers, 
retrieved context, and generated responses, the results are 
evaluated using the OpenEvals library. The evaluation is 
performed in terms of correctness, conciseness, 
hallucination, and similarity between the ground truth and 
the generated answer, as shown in Table I. In addition, for 
the proposed RAG framework, varying the number of 
retrieved contexts per retriever from 1 to 10 results in 
observable variations in the evaluation metrics, as presented 
in Table II. Four evaluation metrics, defined in the 
OpenEvals library, are used to assess all RAG pipelines 
using the GPT-4o mini model. These metrics are described 
as follows: 

1. Correctness: The inputs for this metric are the 
question, the generated answer, and the ground truth. 
GPT-4o mini assigns a score between 0 and 1 based on 
the correctness of the generated answer with respect to 
the ground truth, where a value closer to 1 indicates 
better performance. The built-in correctness prompt 
provided to the evaluator model is as follows: 
 
“You are an expert data labeler evaluating model outputs 
for correctness. Your task is to assign a score based on 
the following rubric: <Rubric> A correct answer: – 
Provides accurate and complete information – Contains 
no factual errors – Addresses all parts of the question – 
Is logically consistent – Uses precise and accurate 
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terminology When scoring, you should penalize: – 
Factual errors or inaccuracies – Incomplete or partial 
answers – Misleading or ambiguous statements – 
Incorrect terminology – Logical inconsistencies – 
Missing key information </Rubric> <Instructions> – 
Carefully read the input and output – Check for factual 
accuracy and completeness – Focus on correctness of 

information rather than style or verbosity </Instructions> 
<Reminder> The goal is to evaluate factual correctness 
and completeness of the response.</Reminder> <input> 
{inputs} </input> <output> {outputs} </output>  Use 
the reference outputs below to help you evaluate the 
correctness of the response: <reference_outputs> 
{reference_outputs} </reference_outputs>” 

 

 
Fig.4 Variation of Correctness with the Number of Retrieved Contexts or Documents Before the RRF Technique in Our RAG. 

 
2. Conciseness: The inputs for this metric are the 
question and the generated answer only. GPT-4o mini 
assigns a score between 0 and 1, where a value closer to 
1 indicates a more concise response. The conciseness 
prompt, provided by the OpenEvals library, is as 
follows: 
 
“You are an expert data labeler evaluating model outputs 
for conciseness. Your task is to assign a score based on 
the following rubric: <Rubric> A perfectly concise 
answer: – Contains only the exact information requested 
– Uses the minimum number of words necessary to 
convey the complete answer – Omits pleasantries, 
hedging language, and unnecessary context – Excludes 
meta-commentary about the answer or the model’s 
capabilities – Avoids redundant information or 
restatements – Does not include explanations unless 
explicitly requested When scoring, you should deduct 
points for: – Introductory phrases such as “I believe” or 
“The answer is” – Hedging language such as “probably” 
or “as far as I know” – Unnecessary context or 
background information – Explanations when not 
requested – Follow-up questions or offers for more 
information – Redundant information or restatements – 
Polite phrases such as “hope this helps” </Rubric> 
<Instructions> – Carefully read the input and output – 
Identify unnecessary elements based on the rubric 
</Instructions> <Reminder> The goal is to reward 
responses that provide complete answers with no 
extraneous information. </Reminder> <input> {inputs} 
</input> <output> {outputs}</output>” 

3. Hallucination: The inputs for this metric are the 
question, ground truth, retrieved context, and generated 
answer. GPT-4o mini assigns a score between 0 and 1, 
where a value closer to 0 indicates fewer hallucinations. 
The hallucination prompt provided by the OpenEvals 
library is as follows: 
 
“You are an expert data labeler evaluating model outputs 
for hallucinations. Your task is to assign a score based 
on the following rubric: <Rubric> A response without 
hallucinations: – Contains only verifiable facts directly 
supported by the input context – Makes no unsupported 
claims or assumptions – Does not add speculative or 
imagined details – Maintains accuracy in dates, numbers, 
and specific details – Appropriately indicates uncertainty 
when information is incomplete </Rubric> 
<Instructions> – Read the input context thoroughly – 
Identify all claims made in the output – Cross-reference 
each claim with the input context – Note unsupported or 
contradictory information </Instructions> <Reminder> 
Focus solely on factual accuracy and contextual support. 
Style and presentation should not influence scoring. 
</Reminder> <context> {context} </context> <input> 
{inputs} </input> <output> {outputs} </output> 
<reference_outputs> {reference_outputs} 
 </reference_outputs>” 
4. Similarity: This metric measures the semantic 
similarity between the generated answer and the ground 
truth and assigns a score between 0 and 1, where a value 
closer to 1 indicates higher similarity. 
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V. CONCLUSION

The proposed RAG framework demonstrates superior 
performance in terms of correctness and similarity 
compared to other systems, achieving a correctness score of 
79.75% and a similarity score of 78.7%. In addition, 
experiments were conducted to analyze the impact of 
varying the number of retrieved documents per retriever 
prior to applying the Reciprocal Rank Fusion (RRF) 
technique. The results indicate the presence of local maxima 
at even numbers of retrieved documents, with higher 
performance observed at even retrieval counts compared to 
their adjacent odd values. Furthermore, when varying the 
number of retrieved results from 1 to 10, a decrease in 
accuracy is observed at the midpoint, specifically when five 
documents are retrieved, as illustrated in Figure 4. 
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