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Abstract - In a standard RAG pipeline, source documents are
split into smaller chunks, and embedding models generate
vector representations for these chunks. The embeddings are
stored in a vector database, which retrieves relevant chunks
using vector similarity or keyword-based search. The retrieved
chunks are then combined with the user query and passed to
an LLM to generate the final response. Although effective,
traditional RAG systems depend heavily on the choice of
embedding model, retrieval method, and the number of
retrieved chunks, all of which significantly impact accuracy
and hallucination levels. Results show that the proposed RAG
system significantly outperforms individual retrieval systems.
It achieves a correctness score of 79.75% and a similarity score
of 78.7%, surpassing all baseline RAG pipelines. Furthermore,
experiments varying the number of retrieved chunks per
retriever (from 1 to 10) reveal an interesting trend:
performance peaks at several even-numbered retrieval counts,
indicating local maxima in correctness and similarity when
using even numbers of retrieved documents before applying
Reciprocal Rank Fusion (RRF). Overall, this study
demonstrates that combining multiple retrieval mechanisms
with RRF yields more accurate, contextually aligned, and
consistent outputs compared to traditional single-retriever
RAG implementations. The proposed framework enhances
RAG reliability without fine-tuning and provides empirically
validated insights into the impact of retrieval volume on
performance. The work repository is publicly maintained at:
https://github.com/Surajxyz/RAG_PAPER
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I. INTRODUCTION

Large Language Models (LLMs) are trained on extremely
large corpora of text, allowing them to learn patterns,
linguistic structures, factual knowledge, and reasoning
capabilities. All of this acquired information is stored in the
form of numerical parameters, commonly referred to as
model weights. Once training is completed, the model’s
knowledge becomes static; it is limited to the data available
up to the point at which the training dataset was collected
and processed. As a result, an LLM cannot inherently learn
or update itself after deployment unless it undergoes another
training or fine-tuning cycle. This creates a natural
restriction: the model is unaware of events, facts, and
domain-specific changes that occurred after its pretraining
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cutoff date. When users ask questions whose answers
depend on information outside the model’s training
knowledge, the model attempts to infer or “guess” the
answer based on its learned patterns. This behavior often
results in hallucinations, where the model confidently
generates incorrect or fabricated responses. To mitigate
hallucination, there are two primary approaches. The first is
fine-tuning, where the model is trained further on new
domain-specific datasets. Although fine-tuning can update
the model’s knowledge and improve performance on
specialized tasks, it has several drawbacks. Fine-tuning
requires significant computational resources, making it
expensive for large-scale or frequent updates. It also carries
the risk of catastrophic forgetting, in which the model loses
some of its original general knowledge while adapting to
new data. Additionally, organizations may not always have
access to the necessary GPU resources or permissions to
perform fine-tuning on proprietary models. Because of these
limitations, fine-tuning is often impractical, especially when
the goal is simply to provide up-to-date or domain-specific
factual information.

The second and far more practical approach is Retrieval-
Augmented Generation (RAG). RAG avoids modifying the
model’s weights and instead provides the model with the
information it needs at query time. This makes RAG
especially effective for scenarios in which the model must
answer domain-specific questions or respond to information
that has changed over time—before or after the model’s
training cutoff. Rather than relying solely on the internal
knowledge of the LLM, RAG allows the system to
reference an external knowledge source, enabling the model
to produce more accurate, grounded, and up-to-date
answers. The RAG pipeline typically begins with data
ingestion, where raw documents such as PDFs, webpages,
manuals, or reports are processed into smaller, manageable
text segments called chunks. Chunking is important because
most embedding models and vector databases operate more
efficiently on smaller, coherent pieces of text. Once chunks
are created, each chunk is converted into an embedding
vector using an embedding model, which may be an open-
source model such as Sentence Transformers or a closed-
source model such as OpenAl’s text-embedding series. The
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chunk text and its corresponding embedding vector are then
stored in a vector store, which supports fast similarity
search. After ingestion, the second major RAG stage is
retrieval and generation. When a user submits a query, the
system generates an embedding for the query and performs
a similarity search within the vector store. The goal is to
retrieve the chunks that are most relevant to the user’s
question. Retrieval can be based on pure vector similarity or

supplemented with keyword-based methods such as BM25.
The selected chunks form the context, which is combined
with the user’s query and fed to the LLM. The LLM now
has access to external factual information retrieved
specifically for the query, enabling it to generate a more
accurate and grounded response. This augmented approach
significantly reduces hallucination and enhances the
model’s reliability for real-world tasks.
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Fig.2 Retrieval of Relevant Context and Generation of an Answer

II. RELATED WORK

Large Language Models (LLMs) cannot effectively capture
low-popularity information or domain-specific knowledge
that lies outside their pretraining datasets; therefore, fine-
tuning or Retrieval-Augmented Generation (RAG) is
typically employed. In fine-tuning, a major challenge
encountered is catastrophic forgetting, in which LLMs
begin to lose previously learned knowledge. As a result,
fine-tuning alone often performs worse compared to RAG
or a combined fine-tuning and RAG approach, as reported
by Soudani ef al, [1]. In their study, English and Chinese
datasets were used with different LLMs to evaluate RAG
across four capabilities: noise robustness, negative rejection,
information integration, and counterfactual robustness. For
long-answer generation, Chen et al., [4] and Jiang et al., [5]
proposed Forward-Looking Active Retrieval-Augmented
Generation. RAG has been shown to support a wide range
of tasks, including dialogue response generation, machine
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translation, language modeling, summarization, paraphrase
generation, and data-to-text generation, as surveyed by Li et
al., [6]. However, lower RAG accuracy is often attributed to
suboptimal retrieval performance, which can result in
irrelevant chunk selection. To address this issue, reranking
techniques such as Reciprocal Rank Fusion (RRF) are
employed. This approach, which is also adopted in our
work, enhances retrieval effectiveness by generating similar
queries and increasing retrieval depth. Rackauckas et al., [7]
reported that the retrieval time using RRF is approximately
1.77 times higher than that of traditional RAG.

In addition, the FILCO technique filters retrieved contexts
using a lexical approach and trains a filtering model to
select the most relevant chunks for generation, as proposed
by Wang et al, [12]. Retrieval evaluation has also been
explored by Salemi et al., [2] through the introduction of
eRAG. Their findings indicate that retrieval accuracy
decreases when selected chunks originate from the middle
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of a document and improves when chunks are selected from
the beginning or end. This phenomenon, referred to as the
“loss in the middle,” was identified by Liu et al, [8].
Beyond vector databases, some studies employ graph-based
databases in which data are represented as nodes and edges,
with nodes storing content and edges representing
relationships. When graphs are used as the retrieval
backend, the approach is referred to as GraphRAG or
LightRAG, as described by Peng et al., [9], Han ef al,, [10],
and Guo ef al, [14]. For large document collections,
LongRAG has been proposed, leveraging long-context
window generation models to achieve significantly
improved performance, as demonstrated by Jiang et al.,
[13]. For RAG evaluation, the RAGAS framework has been
introduced; however, in some cases, it produces NaN values
when the LLM fails to generate scores. Consequently, the
OpenEvals library is used instead of RAGAS in this work,
following the observations of Es et al., [21].

Query

Wector storel

_-_+

1. METHODOLOGY

In this paper, we construct a dataset consisting of 20
questions and corresponding ground-truth answers,
randomly extracted from a 603-page PDF document. This
PDF is ingested into the RAG pipeline, where it is
segmented into chunks of 500 tokens each. Each chunk is
represented as a document in which the page content field
contains the chunk text and the metadata field includes the
chunk_id and source information (e.g., Document ( page
content="chunk content", metadata = { " source": "pdf",
"chunk id": 0})). Each document is stored in a FAISS-
based vector store using different embedding models,
namely text-embedding-3-small, text-embedding-3-large,
and all-mpnet-base-v2. Each embedding model is used to
construct a traditional RAG pipeline. In addition, a fourth
RAG pipeline is implemented using BM25 retrieval, which
performs keyword-based search without a vector store.

RRF \—¢®

answer

4

Fig.3 Our RAG Technique with Four Retrievals and Reciprocal Rank Fusion

Across all four traditional RAG pipelines, gpt-3.5-turbo is
used as the common generation model. In this work, we
further introduce a RAG framework that integrates all the

retrieval methods described above. Each retriever generates
four candidate chunks, after which Reciprocal Rank Fusion
(RRF) is applied to assign a score to each retrieved chunk
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based on its rank across the individual retrieval results. The
chunk with the highest aggregated score is then selected as
context for answer generation using gpt-3.5-turbo. The
dataset is evaluated using the five RAG pipelines described
above, resulting in five tables containing the question,
ground truth, retrieved context, and generated answer.
These outputs are subsequently evaluated using the
OpenEvals library in terms of correctness, conciseness,
hallucination, and similarity, with gp¢-4o-mini serving as the
evaluation model. In the RRF process, a score is assigned to
each unique document or context appearing in the four
retrieval result sets. The final score for a document is
computed as the sum of the reciprocals of its ranks across
the retrieval sets in which it appears. The document or
chunk with the highest total score is selected for answer
generation, as defined by the RRF scoring formula.

SCORE (Retrieved Doc) = ¥4 ———

(rank+60)

Note: If the document or context is not present in a retrieved
set, a value of zero is added to the equation.

IV. RESULTS AND DISCUSSION

If the number of contexts retrieved from each retriever
varies from 1 to 10 in our RAG, where OUR RAG 10
means the RAG used has four retrievers and the output of
each is 10, which are passed to the RRF technique and
extract one context having the highest score for generation.

TABLE Il EVALUATION METRICS FOR ALL FIVE RAGS

Evaluation Metrics Correctness | Conciseness | Hallucination | Similarity
RAG contains BM25 retriever with one context for the generation 71 88.25 88.5 74.05
g)/r%tct}l eczr;;aei?;t i‘czr)l(t—embedding-}large retriever with one context 7595 85.99 955 767
l;)fr\gl :(;I;aé?;t itg;;t—embeddmg-}small retriever with one context 745 36 86.5 7275
:ﬁlg ai:t(i)(r)lltlams all-mpnet-base-v2 retriever with one context for the 69 ]7 73 7215
el I I R
TABLE Il VARIATION OF EVALUATION METRICS
Correctness | Conciseness | Hallucination | Similarity

OURRAGI10 78 82.25 96 76.1

OUR RAG 9 78.24 87.74 96.5 80.2

OUR RAG 8 79.25 89.25 91.75 75.9

OUR RAG 7 76.5 89 88.5 76.25

OUR RAG 6 76.25 83.24 94 76.4

OUR RAG 5 52.75 20.5 68.5 69.4

OUR RAG 4 79.75 83.49 90 78.7

OUR RAG 3 73.25 87.25 96 74.05

OUR RAG 2 74.75 81 95.5 77.5

OUR RAG 1 71.25 90.24 85.24 73.85

After obtaining the output files from all RAG pipelines,
each containing the 20 questions, ground truth answers,
retrieved context, and generated responses, the results are
evaluated using the OpenEvals library. The evaluation is
performed in terms of correctness, conciseness,
hallucination, and similarity between the ground truth and
the generated answer, as shown in Table 1. In addition, for
the proposed RAG framework, varying the number of
retrieved contexts per retriever from 1 to 10 results in
observable variations in the evaluation metrics, as presented
in Table II. Four evaluation metrics, defined in the
OpenEvals library, are used to assess all RAG pipelines
using the GPT-40 mini model. These metrics are described
as follows:
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1. Correctness: The inputs for this metric are the
question, the generated answer, and the ground truth.
GPT-40 mini assigns a score between 0 and 1 based on
the correctness of the generated answer with respect to
the ground truth, where a value closer to 1 indicates
better performance. The built-in correctness prompt
provided to the evaluator model is as follows:

“You are an expert data labeler evaluating model outputs
for correctness. Your task is to assign a score based on
the following rubric: <Rubric> A correct answer: —
Provides accurate and complete information — Contains
no factual errors — Addresses all parts of the question —
Is logically consistent — Uses precise and accurate



Improving RAG Accuracy Through Multi-Retrieval Integration and Rank Base Retrieved Chunk Selection

terminology When scoring, you should penalize: —
Factual errors or inaccuracies — Incomplete or partial
answers — Misleading or ambiguous statements —
Incorrect terminology — Logical inconsistencies —
Missing key information </Rubric> <Instructions> —
Carefully read the input and output — Check for factual
accuracy and completeness — Focus on correctness of

information rather than style or verbosity </Instructions>
<Reminder> The goal is to evaluate factual correctness
and completeness of the response.</Reminder> <input>
{inputs} </input> <output> {outputs} </output> Use
the reference outputs below to help you evaluate the
correctness of the response: <reference outputs>
{reference outputs} </reference_ outputs>"

OUR RAG 1
OUR RAG 2
OUR RAG 3
OUR RAG 4
OUR RAG 5
OUR RAG 6
OUR RAG 7
OUR RAG 8
OUR RAG 9
OUR RAG10

0 10 20 30

correctness

I ——— 71.25
I ——— 7475
I 73,25
I —— 79.75
I —— 5275

I ———— 76.25
I 76.5
I 79.25
I ——— 78.24
I mmmmmmmm——— 78

40

50 60 70 80 90

Fig.4 Variation of Correctness with the Number of Retrieved Contexts or Documents Before the RRF Technique in Our RAG.

2. Conciseness: The inputs for this metric are the
question and the generated answer only. GPT-40 mini
assigns a score between 0 and 1, where a value closer to
1 indicates a more concise response. The conciseness
prompt, provided by the OpenEvals library, is as
follows:

“You are an expert data labeler evaluating model outputs
for conciseness. Your task is to assign a score based on
the following rubric: <Rubric> A perfectly concise
answer: — Contains only the exact information requested
— Uses the minimum number of words necessary to
convey the complete answer — Omits pleasantries,
hedging language, and unnecessary context — Excludes
meta-commentary about the answer or the model’s
capabilities Avoids redundant information or
restatements — Does not include explanations unless
explicitly requested When scoring, you should deduct
points for: — Introductory phrases such as “I believe” or
“The answer is” — Hedging language such as “probably”
or “as far as I know” — Unnecessary context or
background information — Explanations when not
requested — Follow-up questions or offers for more
information — Redundant information or restatements —
Polite phrases such as ‘“hope this helps” </Rubric>
<Instructions> — Carefully read the input and output —
Identify unnecessary elements based on the rubric
</Instructions> <Reminder> The goal is to reward
responses that provide complete answers with no
extraneous information. </Reminder> <input> {inputs}
</input> <output> {outputs}</output>"

33

3. Hallucination: The inputs for this metric are the
question, ground truth, retrieved context, and generated
answer. GPT-40 mini assigns a score between 0 and 1,
where a value closer to 0 indicates fewer hallucinations.
The hallucination prompt provided by the OpenEvals
library is as follows:

“You are an expert data labeler evaluating model outputs
for hallucinations. Your task is to assign a score based
on the following rubric: <Rubric> A response without
hallucinations: — Contains only verifiable facts directly
supported by the input context — Makes no unsupported
claims or assumptions — Does not add speculative or
imagined details — Maintains accuracy in dates, numbers,
and specific details — Appropriately indicates uncertainty
when  information is  incomplete = </Rubric>
<Instructions> — Read the input context thoroughly —
Identify all claims made in the output — Cross-reference
each claim with the input context — Note unsupported or
contradictory information </Instructions> <Reminder>
Focus solely on factual accuracy and contextual support.
Style and presentation should not influence scoring.
</Reminder> <context> {context} </context> <input>
{inputs} </input> <output> {outputs} </output>
<reference outputs> {reference outputs}

</reference outputs>"

4. Similarity: This metric measures the semantic
similarity between the generated answer and the ground
truth and assigns a score between 0 and 1, where a value
closer to 1 indicates higher similarity.

AJEAT Vol.14 No.2 July-December 2025



Suraj Singh Patwal, Devashish Chauhan and Shyam Ji

V. CONCLUSION

The proposed RAG framework demonstrates superior
performance in terms of correctness and similarity
compared to other systems, achieving a correctness score of
79.75% and a similarity score of 78.7%. In addition,
experiments were conducted to analyze the impact of
varying the number of retrieved documents per retriever
prior to applying the Reciprocal Rank Fusion (RRF)
technique. The results indicate the presence of local maxima
at even numbers of retrieved documents, with higher
performance observed at even retrieval counts compared to
their adjacent odd values. Furthermore, when varying the
number of retrieved results from 1 to 10, a decrease in
accuracy is observed at the midpoint, specifically when five
documents are retrieved, as illustrated in Figure 4.
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