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Abstract - Analyzing digital pathology scans with machine 
learning can significantly improve prostate cancer prognosis. In 
recent years, machine learning (ML) algorithms have shown 
impressive capabilities in automating Gleason grading and 
prostate cancer prognostication, addressing challenges such as 
inter-observer variability among pathologists. This study 
investigates the development and validation of machine learning 
models specifically designed for prostate cancer 
prognostication. The study was conducted following the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. The review includes studies 
conducted between 2010 and 2024 that applied machine 
learning techniques to analyze digital pathology scans for 
prostate cancer prognosis. Inclusion criteria were studies 
focused on machine learning, prostate cancer, and digital 
pathology or whole-slide scans in the context of prostate cancer 
prognosis. Exclusion criteria included studies not involving 
machine learning, digital pathology, or prostate cancer, as well 
as studies not published in English or outside the specified time 
frame. Convolutional Neural Networks (CNNs) were the most 
commonly used machine learning approach in the reviewed 
studies, with brief mentions of other techniques. Meta-analysis 
was conducted using GraphPad Prism to create graphical 
representations of machine learning techniques employed in 
prostate cancer prognosis. The findings underscore the 
transformative potential of combining machine learning with 
digital pathology in revolutionizing prostate cancer prognosis. 
The integration of deep learning algorithms with digital 
pathology scans offers more accurate and efficient 
prognostication, significantly improving patient outcomes in the 
fight against prostate cancer. 
Keywords: Prostate Cancer Prognosis, Machine Learning, 
Digital Pathology, Convolutional Neural Networks (CNNs), 
Meta-Analysis 

I. INTRODUCTION

In cancer-related causes of death, prostate cancer is the 
second leading cause of mortality in males. Despite recent 
advancements, prostate cancer continues to claim a 
significant number of lives due to its high prevalence. Bone 
metastases, which are common in prostate cancer patients, 
greatly affect patients' quality of life [1].  

Consequently, improving disease outcome forecasts remains 
a critical clinical need. To enable precision care delivery, a 
robust process for assessing a patient’s disease grade, stage, 
and trajectory must be established following diagnosis. 
Accurate pathological stage prognosis is essential for 

selecting the optimal treatment strategy in prostate cancer 
management [2]. Although the Gleason grade is a powerful 
predictor of outcomes, its utility is limited by significant inter 
observer variability. Incorporating standardized assessment 
techniques for prognostic biomarkers into conventional 
clinical protocols offers potential for improving the precision 
of identifying aggressive prostate tumors in the future [3]. 

Prostate-specific antigen (PSA) levels are one factor 
influencing prostate cancer staging. However, the Gleason 
score (GS) is the primary determinant of prostate cancer 
aggressiveness, based on the Gleason patterns observed 
during examination. GS typically ranges from 6 to 10, with 
lower values indicating low-grade cancer characterized by 
moderate growth, and higher values representing high-grade 
cancer associated with rapid spread [4]. Gleason scores are 
derived from Gleason grades and are used to establish 
prostate cancer prognosis. 

Models built using various biomarkers, such as TMPRSS2: 
ERG fusion status, prostate-specific antigen (PSA), TP53 
mutation, and collagen IV, demonstrate the potential of 
machine learning techniques in predicting the progression 
and prognosis of prostate cancer [5]-[7]. Examples of 
machine learning techniques used include support vector 
machines (SVM) [6], k-nearest neighbors (kNN), 
convolutional neural networks (CNN) [4], pyramid semantic 
parsing network (PSPNet) [8], and Gaussian classifiers. 

This systematic review focuses on using machine learning 
techniques to analyze digital pathology scans and estimate a 
patient’s prognosis or survival likelihood for prostate cancer. 
Machine learning is increasingly being integrated into the 
analysis of digital pathology images. Digital pathology image 
analysis algorithms, powered by machine learning and 
computer vision, have significantly improved the ability to 
recognize, segment, label, and classify various histological 
features linked to the molecular and spatial characteristics of 
prostate cancer [6]. The Gleason score, or the International 
Society of Urological Pathology (ISUP) grading system, 
obtained from prostate biopsies, remains the industry 
standard for assessing cancer stage and progression [9]. 
Therefore, integrating this grading system into machine 
learning methodologies is crucial. 
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II. RATIONALE

Prostate cancer is a leading cause of cancer-related deaths in 
men, underscoring the importance of accurate prognosis for 
effective treatment. However, traditional methods, such as 
Gleason grading, often encounter challenges, particularly due 
to inconsistencies arising from inter-observer variability. 
Machine learning, particularly deep learning approaches like 
Convolutional Neural Networks (CNNs), has shown 
significant potential in automating the analysis of digital 
pathology scans, reducing variability, and improving 
diagnostic accuracy. This study investigates the role of 
machine learning in enhancing prostate cancer prognosis, 
addressing existing gaps, and highlighting its potential to 
improve patient care. 

III. OBJECTIVES OF THE STUDY

The primary objectives of this review are as follows. 
1. To conduct a systematic review on the analysis of digital

pathology scans in prostate cancer prognosis using
machine learning (ML) techniques.

2. To evaluate the achievements of ML techniques in
prostate cancer prognosis through the analysis of digital
pathology scans.

3. To identify the benefits and limitations of ML techniques 
in prostate cancer prognosis using digital pathology
scans.

4. To synthesize and analyze data extracted from selected
articles to provide quantitative insights into the
performance of ML techniques in prostate cancer
prognosis.

IV. METHODOLOGY

A. Criteria for Eligibility

The PRISMA guidelines were followed to perform an 
exhaustive search on both Scopus and PubMed. The search 
included articles published between 2010 and 2024 in 
English. Keywords used in the search were “Prostate cancer,” 
“Digital pathology,” “Artificial intelligence,” “Deep 
learning,” “Machine learning,” and “Prognosis.” 

The search strategy incorporated both keywords and Medical 
Subject Headings (MeSH) terms related to prognosis, digital 
pathology, machine learning, and prostate cancer. The search 
was conducted on PubMed and Scopus, targeting English-
language articles published between 2010 and 2024. 

This systematic review focused on articles utilizing any 
machine learning technique to analyze digital pathology 
scans in the context of prostate cancer prognosis. 

B. Defining Criteria for Inclusion

1. Research focusing on prostate cancer prognosis using
digital pathology scans analyzed with machine learning.

2. Studies with prostate cancer as the primary cohort.

3. Studies addressing the prognosis of prostate cancer.
4. Studies published in English between 2010 and 2024.

C. Defining Criteria for Exclusion

1. Research that does not focus on digital pathology scan
analysis with machine learning for prostate cancer
prognosis.

2. Studies not involving prostate cancer as the primary
cohort.

3. Studies that do not include prostate cancer prognosis or
digital pathology.

4. Studies not published in English.
5. Review articles or resources that are inaccessible.
6. Studies published before 2010 or after 2024.

V. SEARCH APPROACH USED

The search approach used and advanced key on Scopus and 
PubMed extensive supply of materials to identify studies that 
were of use to this systematic review. 

The search queries used on Scopus gave 64 articles: 
TITLE-ABS-KEY ( ( “Digital” OR “Automated” ) AND 
( “Pathology” OR “Study” ) AND ( “Scans” OR “Analysis” ) 
AND ( “Machine Learning” OR “Deep Learning” OR 
“Artificial Intelligence” OR “AI” OR “Big Data” ) AND 
( “Prostate Cancer” OR “Prostate Carcinoma” ) AND 
( “Prognosis” OR “Prediction” OR “Outcome” ) ) AND 
PUBYEAR > 2009 AND PUBYEAR < 2025 AND PUBYEAR > 
2012 AND PUBYEAR < 2025 AND ( LIMIT-TO 
( SUBJAREA , “MEDI” ) OR LIMIT-TO ( SUBJAREA , 
“BIOC” ) OR LIMIT-TO ( SUBJAREA , “COMP” ) OR 
LIMIT-TO ( SUBJAREA , “HEAL” ) ) AND ( LIMIT-TO 
( LANGUAGE , “English” ) ) 

The search query used on PubMed gave 56 articles: 
((“digit pathol 2019”[Journal] OR (“digital”[All Fields] 
AND “pathology”[All Fields]) OR “digital pathology”[All 
Fields] OR ((“whole”[All Fields] OR “wholeness”[All 
Fields] OR “wholes”[All Fields]) AND (“slide”[All Fields] 
OR “slides”[All Fields] OR “sliding”[All Fields] OR 
“slidings”[All Fields]) AND (“image”[All Fields] OR 
“image s”[All Fields] OR “imaged”[All Fields] OR 
“imager”[All Fields] OR “imager s”[All Fields] OR 
“imagers”[All Fields] OR “images”[All Fields] OR 
“imaging”[All Fields] OR “imaging s”[All Fields] OR 
“imagings”[All Fields]))) AND (“radionuclide 
imaging”[MeSH Terms] OR (“radionuclide”[All Fields] 
AND “imaging”[All Fields]) OR “radionuclide 
imaging”[All Fields] OR “scanning”[All Fields] OR “scan 
s”[All Fields] OR “scanned”[All Fields] OR 
“scannings”[All Fields] OR “scans”[All Fields] OR 
(“analysis”[MeSH Subheading] OR “analysis”[All Fields])) 
AND (“machine learning”[MeSH Terms] OR 
(“machine”[All Fields] AND “learning”[All Fields]) OR 
“machine learning”[All Fields] OR (“deep learning”[MeSH 
Terms] OR (“deep”[All Fields] AND “learning”[All Fields]) 
OR “deep learning”[All Fields])) AND (((“prostatic 
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neoplasms”[MeSH Terms] OR (“prostatic”[All Fields] 
AND “neoplasms”[All Fields]) OR “prostatic 
neoplasms”[All Fields] OR (“prostate”[All Fields] AND 
“cancer”[All Fields]) OR “prostate cancer”[All Fields]) 
AND (“prognosis”[MeSH Terms] OR “prognosis”[All 
Fields] OR “prognoses”[All Fields])) OR ((“prostat”[All 
Fields] OR “prostate”[MeSH Terms] OR “prostate”[All 
Fields] OR “prostates”[All Fields] OR “prostatic”[All 
Fields] OR “prostatism”[MeSH Terms] OR 
“prostatism”[All Fields] OR “prostatitis”[MeSH Terms] 
OR “prostatitis”[All Fields]) AND (“carcinoma”[MeSH 
Terms] OR “carcinoma”[All Fields] OR “carcinomas”[All 
Fields] OR “carcinoma s”[All Fields]) AND (“predict”[All 
Fields] OR “predictabilities”[All Fields] OR 
“predictability”[All Fields] OR “predictable”[All Fields] 
OR “predictably”[All Fields] OR “predicted”[All Fields] 
OR “predicting”[All Fields] OR “prediction”[All Fields] 
OR “predictions”[All Fields] OR “predictive”[All Fields] 
OR “predictively”[All Fields] OR “predictiveness”[All 
Fields] OR “predictives”[All Fields] OR 
“predictivities”[All Fields] OR “predictivity”[All Fields] 
OR “predicts”[All Fields])) OR ((“prostatic 
neoplasms”[MeSH Terms] OR (“prostatic”[All Fields] 

AND “neoplasms”[All Fields]) OR “prostatic 
neoplasms”[All Fields] OR (“prostate”[All Fields] AND 
“cancer”[All Fields]) OR “prostate cancer”[All Fields]) 
AND (“predict”[All Fields] OR “predictabilities”[All Fields] 
OR “predictability”[All Fields] OR “predictable”[All 
Fields] OR “predictably”[All Fields] OR “predicted”[All 
Fields] OR “predicting”[All Fields] OR “prediction”[All 
Fields] OR “predictions”[All Fields] OR “predictive”[All 
Fields] OR “predictively”[All Fields] OR 
“predictiveness”[All Fields] OR “predictives”[All Fields] 
OR “predictivities”[All Fields] OR “predictivity”[All Fields] 
OR “predicts”[All Fields])) OR ((“prostat”[All Fields] OR 
“prostate”[MeSH Terms] OR “prostate”[All Fields] OR 
“prostates”[All Fields] OR “prostatic”[All Fields] OR 
“prostatism”[MeSH Terms] OR “prostatism”[All Fields] 
OR “prostatitis”[MeSH Terms] OR “prostatitis”[All Fields]) 
AND (“carcinoma”[MeSH Terms] OR “carcinoma”[All 
Fields] OR “carcinomas”[All Fields] OR “carcinoma s”[All 
Fields]) AND (“prognosis”[MeSH Terms] OR 
“prognosis”[All Fields] OR “prognoses”[All Fields])))) 
AND (2010:2024[pdat]) 

Fig. 1 A flowchart diagram showing the process of screening articles 
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A. Selection Process

This review employed the PICOS framework to define the 
inclusion and exclusion criteria. 

1. Participants: Males diagnosed with prostate cancer.
2. Interventions: Studies utilizing machine learning

techniques to analyze digital pathology scans or whole-
slide imaging for prostate cancer prognosis.

3. Comparison: Various machine learning techniques used
to analyze digital pathology scans or whole-slide
imaging.

4. Outcomes: Analysis of prognostic accuracy metrics for
machine learning models.

5. Study Design: Retrospective and prospective studies.

VI. DATA COLLECTION PROCESS

A. Data Extraction, Sorting, and Selection

A systematic approach was employed to extract and organize 
data from selected studies. Discrepancies during the process 
were resolved using predefined eligibility criteria, AI-
supported tools, and expert judgment. The extracted data 
included essential study details such as participant 
demographics, interventions, outcomes, and key findings. 

The screening process consisted of three distinct stages: 

1. Search results were imported into Mendeley and
transferred to HubMeta, where duplicates were removed, 
and articles were organized for review.

2. Titles and abstracts were screened using an AI assistant
in conjunction with a human reviewer, following the
PICOS framework.

3. Full-text articles meeting the inclusion criteria were
thoroughly reviewed to confirm their relevance.

B. Data Items

The extracted data included the following: study titles, 
authors, publication years, journals, methodologies, sample 
sizes, inclusion/exclusion criteria, and data sources. 

C. Assessment of Quality

Each study was evaluated based on four core criteria: 

1. Selection Bias: Assessment of participant selection
methods.

2. Instrument Reliability: Evaluation of the dependability
of measurement tools.

3. Handling of Missing Data: Review of methods for
managing incomplete data.

4. Accuracy of Results Reporting: Verification of
transparent and accurate results reporting.

To assess the utility of machine learning in analyzing digital 
pathology for prostate cancer prognosis, metrics such as 

accuracy, mean, and standard deviation were employed. 
Additional performance indicators included AUC-ROC, 
Gleason score, and the Dice Similarity Coefficient (DSC). 

From an initial pool of 118 studies sourced from Scopus and 
PubMed, 14 were deemed eligible after applying the PICOS 
framework and inclusion/exclusion criteria. The selection 
process was visually represented using a PRISMA flowchart 
(Figure 1). After duplicates were removed and abstracts 
screened, the final selection, spanning 2010 to 2024, was 
summarized in Table I. 

D. Measures of Summary

The performance of predictive models was summarized using 
metrics such as odds ratios (OR) and hazard ratios (HR), 
presented with 95% confidence intervals (CI). 

E. Strategy for Data Integration and Synthesis

A PRISMA flowchart (Figure 1) illustrated the article 
selection process, highlighting the number of studies retained 
at each stage. Key findings were summarized in a narrative 
synthesis, with a table detailing datasets, machine learning 
models, accuracy, and outcomes. When sufficient data was 
available, a meta-analysis was conducted using a random-
effects model, with heterogeneity measured by the I² statistic. 

F. Bias Assessment

Potential biases - including selection, performance, detection, 
attrition, and reporting biases - were critically examined. 
Disagreements were resolved through reassessment, and 
studies with significant bias were excluded from the final 
review. Although machine learning models generally 
demonstrated strong performance in predicting prostate 
cancer outcomes, challenges persisted in managing large 
datasets. Recent algorithmic advances could reduce the need 
for dataset segmentation, enabling real-time patient data 
integration to enhance predictive accuracy and clinical 
applications. 

G. Study Design

This systematic review focused on predictive models for 
prostate cancer prognosis using machine learning and digital 
pathology scans. The study adhered to PRISMA guidelines, 
ensuring rigor in the selection process and quality 
assessment. 

VII. DATA EXTRACTION, SORTING, AND
SELECTION 

Study data were collected using a standardized extraction 
form, and inconsistencies were resolved through a 
combination of AI-assisted screening and expert judgment. 
Extracted data included details on study characteristics, 
participant demographics, interventions, outcomes, and 
results. 
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The selection process involved three steps: 

1. Search results were imported into Mendeley and
HubMeta, where duplicate entries were removed.

2. Titles and abstracts were evaluated by an AI tool and a
reviewer based on the PICOS criteria.

3. Full-text articles were reviewed to ensure they met the
eligibility requirements.

TABLE I DATA EXTRACTED FROM 14 SYSTEMATIC REVIEWED PUBLICATIONS
Sl. 
No. 

Author(s), 
Year 

ML Models 
Used Dataset Source Accuracy AUC-

ROC Outcome 

1 
Hammouda 
et al., (2021) 
[4] 

CNN (pyramidal 
deep learning) 

608 Whole 
Slide Images 

(WSIs) 

Patch: 
High Not stated 

Improved automatic Gleason 
grade classification with precision 
~80%, recall 60-80%, F1-score. 

2 Qiu et al., 
(2022) [8] 

Pyramid 
Semantic Parsing 

Net 

Vancouver 
Prostate Centre, 
MICCAI 2019 

Not stated Not stated 
Effective segmentation for 
Gleason grades, distinguishing 
low-risk and high-risk cancers. 

3 Pizurica et al., 
(2023) [7] 

TiDo deep 
learning model 

Whole Slide 
Images (WSIs) Not stated Not stated Predicted TP53 mutations linked 

to aggressive disease phenotypes. 

4 
Karageorgose 
et al., (2024) 
[6] 

Deep learning-
based pipeline 

CD31, CD34, 
Collagen IV 

images 

Precision: 
~93-95% Not stated 

Detected blood vessels; 
correlations with Gleason grades 
and 5-year recurrence rates. 

5 
Melo PAS 
et al., (2021) 
[1] 

Inception v3, 
Mask R-CNN 

Radical 
prostatectomy 

WSIs 

91.2%-
94.1% Not stated 

Identified Gleason patterns but 
lower concordance with 
pathologists in test set (44%). 

6 Kott et al., 
(2021) [10] Residual CNN 85 Prostate 

Core Biopsies 
85.4%-
91.5% Not stated 

Effective coarse/fine patch 
classification but struggled with 
adjacent Gleason patterns. 

7 Jake et al., 
(2022) [11] 

3D CNN (nnU-
Net) 

PET/CT scans 
([68Ga]Ga-
PSMA-11) 

>90% PPV: 
97.2% 

Biomarker extraction correlated 
strongly with patient survival 
outcomes. 

8 Nishio et al., 
(2023) [12] 

EfficientNet with 
LDL 

10,616 Whole 
Slide Images 40.7% 0.364 

Improved diagnostic performance 
using label distribution learning 
(LDL). 

9 Paulson et al., 
(2022) [2] 

VGG-16, 
Extreme Gradient 

Boosting 

Hematoxylin 
and eosin-

stained biopsies 
Not stated 0.72 (avg) Predicted adverse pathology in 

GG 2 and 3 prostate biopsies. 

10 Sang et al., 
(2011) [13] SVM, ANN 

Transrectal 
ultrasound-

guided biopsies 
Not stated SVM: 

0.805 

SVM outperformed ANN in 
predicting advanced prostate 
cancer (>pT3a). 

11 
Ikromjanov 
et al., (2023) 
[9] 

EfficientNetB2 
U-Net

Whole Slide 
Images (WSIs) Not stated Not stated 

Segmented benign, cancerous, and 
stroma tissue for histological 
analysis. 

12 Marini et al., 
(2021) [14] 

CNN (semi-
supervised 
learning) 

Multiple 
heterogeneous 

datasets 
Not stated Not stated 

Enhanced Gleason grading 
performance across datasets with 
sparse annotations. 

13 Omar et al., 
(2024) [5] 

Attention-based 
deep learning 

TCGA prostate 
adenocarcinoma 

WSIs 
Not stated 0.73 

Predicted TMPRSS2 fusion, 
identifying morphologic features 
linked to survival outcomes. 

14 Blessin et al., 
(2023) [3] 

AI with multiplex 
fluorescence 

Tissue 
Microarrays 

(TMA) 
Not stated Not stated 

Automated Ki-67 labeling index 
correlated with Gleason score and 
provided robust prognosis. 

VIII. REPORT ON META-ANALYSIS

The analysis indicates that the mean AUC-ROC is 0.655 
(95% CI: 0.487-0.822), suggesting that the predictive models 
exhibit moderate to good ability in distinguishing outcomes 
for prostate cancer prognosis. Among these, Support Vector 
Machines (SVMs) demonstrate superior performance. 

A. Performance Distribution

The AUC-ROC values across the studies ranged from 0.364 
to 0.805, highlighting variability in model effectiveness. A 
breakdown of the models is as follows. 

B. Relative Model Ranking

1. Lowest-Performing Model: Nishio et al., (AUC-ROC:
0.364) exhibited poor accuracy, potentially due to
dataset challenges or methodological limitations.

2. Highest-Performing Model: Sang et al., (AUC-ROC:
0.805) demonstrated strong predictive capability, likely
reflecting better algorithm optimization or dataset
alignment.
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TABLE II SHOWING THE AUC-ROC VALUES 
Studies Model Auc-Roc 

1. Sang et al.,  SVM 0.805 
2. Omar et al., DL attention-based 0.73 
3. Paulson et al., CNN, XGBoost 0.72 

4. Nishio et al., EfficientNet + LDL 0.364 

This ranking, presented in Table II, suggests that SVM and 
attention-based deep learning (DL) models outperform 
others, indicating a potential advantage for models utilizing 
support vector-based optimization and attention mechanisms. 

C. Consistency and Variability

1. Standard Deviation: The standard deviation of AUC-
ROC values (0.179) indicates moderate variability
among the models.

2. Implications: This variability could stem from
differences in dataset sizes, preprocessing techniques,
feature selection, or the complexity of the algorithms
used.

D. Confidence Intervals

The 95% CI (0.487-0.822) highlights the range of expected 
model performances: 

1. Lower Bound (0.487): Indicates suboptimal
performance, nearing random guessing. 

E. Result

AUC-ROC values above 0.7 (observed in three out of four 
models) are generally considered clinically meaningful, 
suggesting that these models provide reliable decision 
support. The outlier model (Nishio et al.) may benefit from 
methodological improvements or additional training on more 
diverse datasets. 

F. Visual Analysis

A deeper visual analysis can provide further insights. A box 
plot and performance comparison chart will be generated to 
better illustrate the distribution and variability. 

Fig. 2 Bar graph visually representing the distribution of AUC-ROC values for Prostate cancer models 

The AUC-ROC box plot for prostate cancer models (Fig. 2) 
illustrates the distribution of model performance across 
studies, showcasing the range, median, and spread of values. 
Individual red dots represent the AUC-ROC values for each 
study, while the box highlights the interquartile range 
(middle 50% of the data). 

The green dashed line in Fig. 2 marks the mean AUC-ROC 
(0.655), indicating moderate overall model performance. The 

variability in values, ranging from near-random guessing 
(e.g., Nishio et al.,) to strong predictive accuracy (e.g., Sang 
et al.), reflects differences in dataset quality, preprocessing 
techniques, and algorithmic methodologies among the 
studies. This visualization emphasizes the potential for 
improving underperforming models through enhanced 
training and optimized feature selection. 
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Fig. 3 Bar graph visually representing the AUC-ROC values for the included studies, with the mean, error bars and confidence interval highlighted 

The bar graph in Fig. 3 visually represents the AUC-ROC 
values for the included studies, with the mean, error bars, and 
confidence intervals highlighted. 

The visualizations provide additional insights: 
1. Box Plot (Fig. 2): Highlights the range and distribution

of AUC-ROC values, with a noticeable spread between
the highest and lowest values. The mean (green dashed
line) shows a central tendency around 0.655.

2. Bar Chart with Error Bars (Fig. 3): Compares
AUC-ROC values across studies while accounting for
variability (error bars). Models with higher AUC-ROC
values, such as Sang et al., demonstrate superior
performance, while Nishio et al., stands out as an outlier
with significant room for improvement.

TABLE III SHOWING THE DESCRIPTIVE STATISTICS 
Mean (Average 

AUC-ROC) 0.655 

Standard Deviation 0.198 (indicating moderate 
variability) 

Minimum Value 0.364 (Nishio et al.,) 
Maximum Value 0.805 (Sang et al.,) 

Range 0.441 (difference between 
highest and lowest values) 

IX. DISCUSSION

This research emphasizes the growing impact of machine 
learning in analyzing digital pathology scans to improve 
prostate cancer prognosis. The reported AUC-ROC values 
indicate a range of performance levels, with some models, 
such as SVM and deep learning approaches like CNNs and 
attention-based architectures, showing strong predictive 
abilities. However, the variability observed, with AUC-ROC 
scores ranging from 0.364 to 0.805, highlights important 

factors such as the quality of the dataset, preprocessing 
techniques, and the complexity of the models. Advanced 
approaches, including label distribution learning (LDL) and 
semi-supervised techniques, demonstrate the potential to 
enhance accuracy even when dealing with limited 
annotations or heterogeneous datasets. In contrast, studies 
with lower performance suggest opportunities to refine 
methods, especially in handling complex data and improving 
feature selection. 

Combining machine learning with digital pathology offers 
great promise in identifying aggressive prostate tumors and 
supporting personalized treatment decisions. However, 
achieving consistent reliability remains a challenge. 
Expanding the datasets, standardizing preprocessing 
methods, and integrating clinical data, such as PSA levels, 
Gleason scores, and biomarkers, could significantly improve 
model performance and usability in clinical settings. 

A. Prognosis

The analysis reveals an average AUC-ROC of 0.655, 
indicating moderate predictive performance among the 
models. The lowest-performing study (Nishio et al., 0.364) 
suggests variability in effectiveness, while the highest (Sang 
et al., 0.805) demonstrates strong predictive capability. 
Moderate variability (standard deviation: 0.198) highlights 
differences in methodology and dataset quality. While most 
models achieve clinically relevant AUC-ROC (>0.7), 
improvements are needed to bridge the performance gap and 
ensure consistent reliability for prostate cancer prognosis. 

X. CONCLUSION

This study shows that machine learning has significant 
potential to improve prostate cancer prognosis through digital 
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pathology analysis. The mean AUC-ROC of 0.655 reflects 
moderate overall performance, with some models 
demonstrating strong potential for clinical use. However, the 
variation in outcomes points to the need for further 
refinement of algorithms and evaluation techniques. Future 
efforts should focus on improving model design, leveraging 
diverse datasets, and incorporating standardized 
methodologies to ensure better reliability and accuracy. By 
addressing these areas, machine learning could become an 
indispensable tool in prostate cancer care, enabling earlier 
diagnoses and more precise treatment. 
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