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Abstract - This systematic review and meta-analysis evaluated 
the performance of machine learning models in predicting 
prostate cancer progression using lifestyle factors as predictive 
biomarkers to improve prognostic accuracy. Various models 
were analyzed, including Support Vector Machine (SVM), 
Logistic Regression (LR), Random Forest (RF), Multi-Layer 
Perceptron (MLP), and Convolutional Neural Networks (CNN). 
These models were applied to identify diagnostic and prognostic 
biomarkers and to enhance the forecasting of prostate cancer 
progression. The meta-analysis demonstrated high predictive 
effectiveness across models, with mean performance metrics of 
0.901 AUC (Area Under the Curve), 0.914 F1 Score, 0.889 
accuracy, and 0.914 sensitivity. Among the models, the Multi-
Layer Perceptron (MLP) emerged as the most effective, 
achieving 97% accuracy and an AUC of 95.8%. These findings 
underscore the potential of machine learning to integrate 
lifestyle factors as predictive biomarkers, advancing precision 
oncology in prostate cancer care. 
Keywords: AUC (Area Under the Curve), Lifestyle Factors, 
Logistic Regression, Machine Learning, Multi-Layer 
Perceptron, Precision Oncology, Prostate Cancer, Support 
Vector Machine 

I. INTRODUCTION

Prostate cancer (PCa) is a major threat to global health, 
ranking as one of the most common cancers in men and 
significantly contributing to cancer-related deaths [1], [2]. 
PCa is responsible for a substantial number of new cancer 
cases and cancer-related deaths, according to recent statistics 
from the Cancer Journal for Clinicians. The incidence rate of 
PCa increased by 3% annually between 2014 and 2019, 
indicating 99,000 more cases - half of which were advanced 
- than if rates had remained stable. Since 2011, there have
been 4.5% yearly increases in diagnoses at the regional and
distant stages, contributing to this rise [2]. This highlights the
urgent need to improve our knowledge and approaches to
treating this disease. PCa’s clinical development can vary
greatly among individuals, regardless of advancements in
diagnosis, treatment, and screening. Some PCa patients may
face aggressive metastasis and therapy resistance, while
others experience gradual and indolent progression [3].

In recent years, there has been an increased understanding of 
the impact of lifestyle factors on PCa risk and progression. 
These factors encompass a wide range of behaviors and 
habits, including dietary patterns, physical activity levels, 

smoking habits, and alcohol consumption, which have been 
shown to affect various aspects of PCa biology and clinical 
outcomes [4]-[7]. Epidemiological studies indicate that 
factors such as obesity, sedentary behavior, and poor dietary 
habits are consistently associated with a higher risk of 
developing aggressive PCa [8]. Moreover, evolving evidence 
suggests that lifestyle modifications, such as eating a 
balanced diet and engaging in regular exercise, may 
positively influence PCa outcomes by reducing tumor 
aggression and improving treatment response [9]. Despite the 
growing understanding of lifestyle factors in the context of 
PCa, there remains a considerable gap in knowledge 
regarding their role as predictive biomarkers in disease 
progression. 

Conventional prognostic tools often rely on clinical and 
pathological variables, which may not adequately represent 
the complex nature of PCa development [10]. In contrast, 
machine learning (ML) approaches have shown great 
potential for analyzing large and complex datasets and 
detecting predictive patterns that can guide clinical decision-
making [11]. Studies also demonstrate that healthcare is 
being revolutionized by artificial intelligence (AI) due to its 
impact on analyzing massive datasets and enabling quicker 
and more precise prostate cancer lesion diagnosis. AI has 
exhibited exceptional precision in identifying prostate lesions 
and predicting patient survival and treatment response. 
Machine learning algorithms are effective methods for 
processing the vast amounts of data derived from the prostate 
tumor genome quickly and reliably [12], [13]. The 
application of machine learning in PCa aligns with precision 
oncology efforts aimed at tailoring treatment strategies to 
individual patient characteristics and tumor biology [14]. By 
integrating ML techniques with comprehensive lifestyle 
assessments, researchers may uncover innovative biomarkers 
and predictive models that enhance risk stratification, 
optimize treatment selection, and improve patient outcomes 
in PCa care. 

A. Rationale

This research is required due to the continuous challenges in 
accurately predicting prostate cancer progression and 
tailoring effective treatment methods to each patient [3], [11]. 
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The traditional prognostic tools, like clinical and pathological 
factors, often fail to capture the heterogeneous nature of the 
disease despite their advancement [15]. Additionally, 
although lifestyle factors have demonstrated a significant 
effect on prostate cancer risk and progression, their usage in 
predictive models is still limited, therefore, machine learning 
techniques serve as a potential answer to these problems, 
because they utilize complex datasets to create predictive 
models that improve risk assessment and help in the selection 
of personalized treatments for each patients [16]. 

B. Objectives

This systematic review, incorporating meta-analysis, aims to 
evaluate the performance of machine learning models in 
assessing lifestyle factors as predictive biomarkers for 
prostate cancer progression. To enhance knowledge and 
inform future research in machine learning and prostate 
cancer prognosis, this review synthesizes previous research 
and examines the approaches, algorithms, and results of the 
machine learning models employed [17]. Additionally, the 
meta-analysis seeks to combine data from multiple studies by 
aggregating summary statistics and analyzing the 
performance metrics of the machine learning models utilized. 
Appropriate statistical methods were applied for this purpose. 

1. Population: What machine learning techniques have
been employed to analyze lifestyle factors and predict
prostate cancer progression among male patients
diagnosed with the disease?

2. Intervention: How have lifestyle factors, such as
physical activity, smoking habits, and diet, been
incorporated as features in machine learning models for
predicting prostate cancer progression?

3. Comparison: How effective are various machine
learning algorithms in predicting the progression of
prostate cancer based on lifestyle factors?

4. Outcome: What predictive biomarkers or indicators of
prostate cancer progression identified by machine
learning models trained on lifestyle factors contribute to
personalized risk assessment and clinical decision-
making?

5. Study Design: What observational studies (e.g., cohort,
case-control) have investigated the correlation between
lifestyle factors and the progression of prostate cancer?
What predictive modeling studies employing machine
learning approaches have been conducted to identify
predictive biomarkers for prostate cancer progression?

II. METHODOLOGY

The methodology employed in this systematic review 
involved a comprehensive search across four major databases 
- Scopus, PubMed, Google Scholar, and ResearchGate - to
gather relevant studies published between January 2010 and
February 2024. The chosen time frame was selected to
enhance the comprehensiveness, relevance, and
methodological rigor of the literature review. The search
strategy incorporated key terms related to prostate cancer,

artificial intelligence, machine learning, predictive modeling, 
lifestyle factors, and predictive biomarkers. A total of 398 
documents were retrieved from the databases, and rigorous 
eligibility criteria were applied to select the articles included 
in the review. 

A. Eligibility Criteria

The PICOS [18] framework selection criteria were applied to 
articles for review inclusion: 

1. Population: Men with prostate cancer diagnoses.
2. Intervention: Studies utilizing machine learning

techniques to analyze lifestyle factors as predictive
biomarkers for prostate cancer progression.

3. Comparison: Studies comparing different machine
learning algorithms or approaches in predicting prostate
cancer progression based on lifestyle factors.

4. Outcome: Studies employing machine learning models
trained on lifestyle factors to identify predictive
biomarkers or indicators of prostate cancer progression.

5. Study Design: Observational studies (e.g., cohort, case-
control) investigating the correlation between lifestyle
factors and the progression of prostate cancer.

B. Inclusive Criteria

1. Studies involving male patients diagnosed with prostate
cancer.

2. Studies utilizing machine learning techniques to
analyze lifestyle factors as predictive biomarkers for
prostate cancer progression.

3. Studies employing machine learning models trained on
lifestyle factors to identify predictive biomarkers or
indicators of prostate cancer progression.

4. Articles available in the English language.
5. Articles published between January 2010 and March

2024.

C. Exclusive Criteria

1. Studies focusing exclusively on female patients, non-
human subjects, or other cancer types.

2. Studies not employing machine learning techniques or
not assessing lifestyle factors as predictive biomarkers
for prostate cancer progression.

3. Studies that do not identify predictive biomarkers or
indicators of prostate cancer progression or do not use
machine learning models trained on lifestyle factors.

4. Articles not available in the English language.
5. Articles for which full texts are not accessible.
6. Case reports, reviews, editorials, letters, conference

abstracts, and meta-analyses. 

D. Source of Information

An extensive search was conducted on Google Scholar, 
Scopus, ResearchGate, and PubMed to enhance the breadth, 
reliability, and validity of the systematic review, ultimately 
contributing to a more rigorous and impactful research 
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endeavor. The search strategy employed keywords relevant 
to the subject of the systematic review: prostate cancer, 
artificial intelligence, machine learning, predictive modeling, 
lifestyle factors, and predictive biomarkers. 

E. Search Strategy

To retrieve relevant articles, the search strategy utilized a 
combination of keywords and Boolean operators. Key terms 
included “prostate cancer,” “artificial intelligence,” 
“machine learning,” “predictive modeling,” “lifestyle 
factors,” and “predictive biomarkers.” Filters were applied to 
limit the search to articles published between January 2010 
and February 2024, available in the English language, and 
classified as original research articles [19]. 

The search strategy used for the systematic review titled 
“Lifestyle Factors as Predictive Biomarkers in Prostate 
Cancer Progression: A Machine Learning Approach” on the 
aforementioned databases is as follows: 

1. Scopus Database

The following query string resulted in 147 documents on the 
Scopus database: 
TITLE-ABS-KEY ( ( lifestyle OR behav* OR habit OR 
“physical activity” OR diet* ) AND ( prostat* AND ( cancer 
OR carcinoma OR tumor OR neoplasm OR adenocarcinoma 
OR malignancy ) ) AND ( ( predictive OR prognostic ) AND 
( biomarkers OR model* OR indicators ) ) AND ( ( “machine 
learning” OR “artificial intelligence” OR “predictive” ) AND 
( model* OR approach OR method ) ) ) AND PUBYEAR > 
2009 AND PUBYEAR < 2025 AND ( LIMIT-TO 
( SUBJAREA , “MEDI” ) OR LIMIT-TO ( SUBJAREA , 
“BIOC” ) OR LIMIT-TO ( SUBJAREA , “IMMU” ) OR 
LIMIT-TO ( SUBJAREA , “NURS” ) OR LIMIT-TO 
( SUBJAREA , “COMP” ) OR LIMIT-TO ( SUBJAREA , 
“NEUR” ) OR LIMIT-TO ( SUBJAREA , “PHAR” ) ) AND 
( LIMIT-TO ( DOCTYPE , “ar” ) ) AND ( LIMIT-TO 
( PUBSTAGE , “final” ) ) AND ( LIMIT-TO ( SRCTYPE , 
“j” ) ) AND ( LIMIT-TO ( LANGUAGE , “English” ) ) 

2. PubMed Database

The following query string resulted in 121 documents in the 
PubMed database: 
((“prostat*”[All Fields] AND (“carcinoma”[All Fields] OR 
“neoplasm”[All Fields] OR “tumor”[All Fields])) AND 
(“progression”[All Fields] OR “aggression”[All Fields])) 
AND (“lifestyle factor”[All Fields] OR “habit”[All Fields]) 
OR ((“predictive”[All Fields] OR “prognostic”[All Fields]) 
AND (“biomark*”[All Fields] OR “indicator”[All Fields] 
OR “model*”[All Fields])) AND ((“machine learning”[All 
Fields] OR “deep learning”[All Fields] OR “artificial 
intelligence”[All Fields]) AND (“modeling”[All Fields])) 
AND (medline[Filter] AND fha[Filter] AND fft[Filter] AND 
humans[Filter] AND male[Filter] AND data[Filter] AND 
english[Filter]) 

3. Google Scholar and Research Gate

A manual search for articles relevant to the subject of the 
systematic review was conducted using the search bars 
available on Google Scholar and ResearchGate. These 
articles were organized into separate folders using the 
Mendeley Web Importer. The following number of 
documents were extracted: 
Google Scholar: 113 documents; Research Gate: 17 
documents. 

F. Data Management

The articles resulting from the various database searches 
were exported in RIS (Research Information Systems) file 
format and further imported into Hubmeta, a cloud-based 
platform for meta-analysis and systematic reviews [20], for 
screening. The Hubmeta software includes an artificial 
intelligence feature that facilitates the efficient screening of 
articles. February 23, 2024, was the date of the most recent 
search. 

G. Study Selection

The study selection process was meticulously conducted by 
the sole reviewer for this research work, using Hubmeta, a 
systematic review management tool, to ensure that relevant 
articles met predefined criteria. The titles and abstracts of the 
articles were assessed to determine their relevance to the 
research question and compliance with the inclusion criteria 
during the screening process. Following this, a full-text 
review was performed on potentially relevant articles to 
ensure compliance with the inclusion criteria, and important 
information was extracted for analysis. Articles that satisfied 
the inclusion criteria were retained for further evaluation, 
while those that did not were excluded from the research. 

H. Data Extraction

Data extraction was conducted to gather relevant information 
from the selected articles. An organized protocol was 
followed to ensure accuracy and consistency in collecting 
key data points, including study characteristics, participant 
demographics, interventions/exposure, outcomes, and key 
findings from each article. Inconsistencies or uncertainties 
encountered during the extraction process were addressed 
through careful review. 

A PRISMA flowchart, as shown in Fig. 1 [21], was used to 
document the screening and data extraction processes, 
providing a visual representation of the article selection 
process and ensuring that the reporting of results is reliable 
and transparent. The flowchart, which conforms to the 
PRISMA guidelines [22], depicts how many articles were 
collected, screened, evaluated for eligibility, and included in 
the systematic review. This method ensures the systematic 
review’s reliability [23]. 
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Fig. 1 The screened studies documented using PRISMA flowchart 

 
I. Risk of Bias 
 
To ensure the credibility and reliability of the systematic 
review, an assessment of bias risk within the included studies 
was conducted. As the sole reviewer, this evaluation was 
carefully performed in accordance with established 
guidelines for assessing various study designs. Articles that 
did not sufficiently address the research question or failed to 
meet the eligibility criteria were excluded during the 
screening process. A comprehensive search of multiple 
databases and sources further minimized the possibility of 
selection bias, and any inconsistencies were addressed 
through careful inspection and reference to relevant literature. 
 

III. RESULTS 
 
An evaluation of the performance of machine learning 
models in predicting prostate cancer progression based on 
lifestyle factors was conducted in this systematic review. The 
study focused on using biomarkers to identify predictive 

patterns and improve prognostic accuracy. Key performance 
metrics were used to assess the predictive capabilities of the 
models, including AUC, sensitivity, F1 score, and specificity 
[24]-[26]. 
 
Initially, 398 articles were identified through a thorough 
database search. After applying a strict screening procedure 
based on the inclusion and exclusion criteria, nine articles 
were ultimately included in the review. The selection process 
followed PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) guidelines [23], and the 
PRISMA flowchart shown in Fig. 1 [21] illustrates how the 
articles were selected. Only the most relevant studies were 
included in the final analysis due to this methodical approach. 
 
Table I summarizes the nine studies published between 
January 2010 and March 2024. The table highlights their 
authors, publication year, title, study design, and key findings, 
showcasing recent advancements and growing interest in 
prostate cancer research. 

 
TABLE I THE SELECTED STUDIES 

Sl. No. Author(s) 
(Year) Title Machine Learning Methodology Result and Findings 

1 Shin et al., 
(2023) [27] 

A Boolean-based 
machine learning 
framework 
identifies 
predictive 
biomarkers for 
HSP90-targeted 
therapy response 
in prostate 
cancer. 
 

To identify biomarkers, the study employs 
a range of machine learning techniques, 
including OMC, KNN, Naïve Bayes, 
Random Forest, AdaBoost, and Deep 
Forest. The multiclass Support Vector 
Machine (mSVM), which achieves over 
71% accuracy on an independent dataset, 
is identified as the best-performing 
algorithm. 

The study produced a 16-protein biomarker 
panel with a 92% accuracy rate in predicting 
the response to the Hsp90 inhibitor 17-AAG. 
When reduced to a smaller 5-protein panel, it 
maintained an 80% prediction accuracy, 
illustrating its potential for clinical 
translation. This biomarker panel and the 
associated expression signatures could 
contribute to precision oncology and 
personalized treatment regimens by enabling 
better patient selection and more effective 
prostate cancer treatment plans. 
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2 Tong et al., 
(2023) [24] 

A Machine 
Learning Method 
for Predicting 
Biomarkers 
Associated with 
Prostate Cancer 

The study evaluated prostate cancer (PCa) 
prognostic and diagnostic biomarkers 
using machine learning and protein-
protein interaction (PPI) networks. It 
employed a graph autoencoder (GAE) 
framework to encode and decode graph 
features and construction, allowing for the 
understanding of graph generative 
distributions and network embedding from 
PPI nodes. This method proved effective 
for assessing PCa biomarkers. 

Hub genes for prostate cancer (PCa), 
including UBE2C, CCNB1, TOP2A, TPX2, 
CENPM, F5, APOE, NPY, and TRIM36, 
were identified in the study as promising 
diagnostic and prognostic markers. 
Additionally, a four-gene prognostic factor 
was developed, with the model 
demonstrating high sensitivity and specificity 
in predicting patient survival, achieving an 
AUC value of 0.973 at one year. The study 
suggests that the combination of PPI 
networks and machine learning algorithms is 
highly effective in identifying biomarkers for 
PCa diagnosis and prognosis. 

3 Lee et al., 
(2022) [28] 

Developing 
Machine 
Learning 
Algorithms for 
Dynamic 
Estimation of 
Progression 
During Active 
Surveillance for 
Prostate Cancer 
 

For temporal predictive clustering, the 
study utilized the Actor-Critic 
reinforcement learning technique and the 
Dynamic-DeepHit-Lite (DDHL) model. 
With three years of data collection and 
three years of follow-up, the DDHL model 
demonstrated a C-index of 0.79 (±0.11), 
indicating superior predictive power and 
effectiveness in providing dynamic risk 
estimations during active surveillance. 
 

To enable real-time risk predictions based on 
new observations, the study demonstrated the 
application of machine learning algorithms 
for dynamic progression estimation in 
patients with prostate cancer. The models 
also enhanced personalized prediction of 
progression risk by identifying temporal 
clusters of patients with similar future 
outcomes. The results underscore the 
potential of machine learning for managing 
prostate cancer. 
 

4 Yeh et al., 
(2022) [25] 

Investigating the 
Role of Obesity 
in Prostate 
Cancer and 
Identifying 
Biomarkers for 
Drug Discovery: 
Systems Biology 
and Deep 
Learning 
Approaches 

To predict drug candidates based on 
biomarkers, the study employed a drug-
target interaction model utilizing Deep 
Neural Networks (DNNs). To reduce 
overfitting, the model incorporated 
dropout layers, multiple hidden layers, 
ReLU activation functions, and early 
stopping. With an AUC of 0.99, a standard 
deviation of 0.131, and an average 
accuracy of 94.89%, the model 
demonstrated strong predictive 
performance. 

Researchers used a systems biology approach 
to identify prostate cancer and obesity-
specific biomarkers for PCa. A DNN-based 
drug-target interaction (DTI) model 
accurately predicted drug candidates 
targeting these biomarkers, achieving an 
AUC value of 0.99. Two promising multi-
molecule medications were suggested for 
preventing prostate cancer and obesity-
specific PCa. This work highlights how 
combining systems biology with 
computational drug discovery can accelerate 
target identification and improve drug 
development processes. 

5 Chen et al., 
(2022) [29] 

Machine 
Learning-Based 
Models Enhance 
Prostate Cancer 
Prediction 

The study developed predictive models for 
prostate cancer using four supervised 
machine learning algorithms: logistic 
regression, decision trees, random forests, 
and support vector machines. The 
multivariate logistic regression (LR) 
model was found to be the most effective, 
demonstrating the best discrimination and 
generalizability, with minimal 
performance variation between training 
and test datasets. 

According to the research, machine learning 
methods are more accurate and efficient for 
predicting prostate cancer than PSA 
screening. With an AUC of 0.918, the 
multivariate logistic regression (LR) model 
demonstrated the best discrimination. This 
suggests that machine learning models can 
enhance clinical decision-making in prostate 
cancer diagnosis, reduce unnecessary 
biopsies, and improve prostate cancer 
detection. 

6 

Ebru 
Erdem and 
Ferhat 
Bozkurt 
(2021) [30] 

A Comparison of 
Various 
Supervised 
Machine 
Learning 
Techniques for 
Prostate Cancer 
Prediction 

Deep Neural Networks, Multi-Layer 
Perceptrons, Naive Bayes, Support Vector 
Machines, K-Nearest Neighbors, Logistic 
Regression, Linear Regression, and Linear 
Discriminant Analysis were among the 
nine supervised machine learning 
algorithms compared in the study. The 
Multi-Layer Perceptron (MLP) classifier 
was identified as the most effective in 
predicting prostate cancer, achieving a 
95.8% AUC and a 97% F1 Score, 
outperforming the other techniques. 

The MLP classifier, trained using machine 
learning techniques, achieved the highest 
accuracy of 97% and an AUC value of 95.8% 
in predicting prostate cancer. Its F1 Score 
was also 97%, indicating high precision and 
recall. This makes it a clinically useful 
method for predicting prostate cancer, 
potentially preventing unnecessary biopsies 
and demonstrating its effectiveness in 
predicting cancer based on patient 
information. 
 

7 J. Dai 
(2020) [31] 

Analysis of 
Lifestyle and 

The study employed various machine 
learning techniques, including deep neural 

The research identified 84 important features 
related to environmental factors using 
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Environmental 
Factors for 
Cancer 
Prevention Using 
Deep Learning 
and Conventional 
Machine 
Learning with 
UK Biobank 
Data 

networks, convolutional neural networks 
(CNNs), support vector machines, random 
forests, and logistic regression. Among 
these techniques, CNNs demonstrated the 
most effective prediction performance, 
with a sensitivity of 0.933 and an F1 Score 
of 0.961. The use of deep learning 
processes with multi-layer neural 
networks significantly enhanced 
predictive power in analyzing 
environmental factors for cancer 
prevention. 
 

machine learning techniques, which were 
further refined to 27 significant features 
through logistic regression with the lasso 
penalty model. These features were then 
applied to logistic regression, resulting in a 
sensitivity of 0.900, an F1 Score of 0.919, and 
an AUC of 0.974. Additionally, age and 
gender were found to be significantly 
associated with cancer risk, emphasizing the 
importance of considering lifestyle and 
environmental factors in cancer prevention 
strategies. 
 

8 Lee et al., 
(2019) [32] 

Machine 
Learning 
Approaches for 
Predicting 
Prostate Cancer 
Based on Age 
and Prostate-
Specific Antigen 
Level 
 

The study employed five machine learning 
algorithms: Support Vector Machine 
(SVM), Random Forest (RF), Logistic 
Regression (LR), Light Gradient Boosting 
Machine (LGBM), and Extreme Gradient 
Boosting (XGB). The results indicated 
that, across most patient categories, the 
Random Forest (RF) algorithm was the 
most effective for predicting prostate 
cancer. 
 

predicting prostate cancer at rates ranging 
from 65.6% to 74.6%. The highest-scored 
feature influencing prostate cancer prediction 
was prostate-specific antigen (PSA) density 
in patients under 75 years old with a PSA 
level below 20 ng/mL. Other significant 
features also impacted prediction rates across 
different patient groups, providing valuable 
insights into factors affecting prostate cancer 
detection. 
 

9 Toth et al., 
(2019) [26] 

Random Forest-
Based Modeling 
for Detecting 
Biomarkers of 
Prostate Cancer 
Progression 

Using the Random Forest technique for 
ensemble learning, the study constructed 
multiple classification trees. The model 
was trained on a training set and validated 
on a test set. Variable selection was based 
on accuracy reduction and Gini scores. 
The Random Forest model achieved a high 
performance, with an area under the ROC 
curve (AUC) of 95%. 

According to Kaplan-Meier survival 
analyses, a methylation-based classifier 
effectively distinguishes between prognosis 
subgroups in prostate cancer, with a log-rank 
p-value of less than 0.0001. External 
validation using separate prostate cancer 
cohorts yielded AUCs of 77.1% and 68.7% 
for sensitivity analyses. The model 
demonstrated a shorter time to biochemical 
recurrence associated with ZIC2 protein 
expression loss and identified candidate 
genes not previously linked to prostate cancer 
progression. 
 

A. Summary of Findings 
 
The findings from the nine studies included in the review, 
involving a total of 42,949 male patients with prostate cancer, 
are discussed below. J. Dai’s study (2020) [31] is notable for 
employing both traditional machine learning and deep 
learning techniques to explore the relationship between 
environmental factors, lifestyle choices, and cancer incidence. 
In this study, convolutional neural networks (CNNs) 
exhibited strong predictive performance, with a sensitivity of 
0.933 and an F-1 Score of 0.961. Among the machine 
learning techniques employed, CNNs demonstrated the best 
prediction performance, highlighting their effectiveness in 
this context. 
 
In another study by Ebru Erdem and Ferhat Bozkurt (2021) 
[30], the multi-layer perceptron (MLP) classifier achieved 97% 
accuracy and a 95.8% AUC, making it the top-performing 
machine learning model across all studies. The performance 
metrics analysis indicated that the MLP is highly effective in 
predicting cancer, and it offers significant potential for 

improving diagnostic methods and treatment strategies for 
prostate cancer. 
 
The findings underscore the potential of machine learning 
techniques to enhance risk stratification and treatment 
selection for prostate cancer. While several algorithms show 
promise for detecting biomarkers and predictive patterns, the 
MLP classifier demonstrated superior predictive 
performance. Its high precision and accuracy have the 
potential to improve clinical judgment and patient care, 
providing hope for future advancements in prostate cancer 
treatment. 
 
These findings are expected to significantly impact future 
practices, research, and policies, as machine learning 
techniques have proven capable of guiding clinical decision-
making, including personalized treatment, and informing 
policy decisions related to cancer care [33]. Future research 
should focus on addressing limitations, refining machine 
learning frameworks, validating prognostic biomarkers, and 
exploring the implementation of these models in healthcare 
settings. 
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TABLE II SUMMARY OF FINDINGS FROM SELECTED STUDIES 
Sl. 
No. 

Author(s) 
(Year) Model Biomarkers Datasets F-1 

Score AUC Accuracy Sensitivity 

 
1 

Chen et al., 
(2022) [29] 

tPSA LR 
tPSA, Age, fPSA, PV, 
NLR, peripheral blood 
neutrophil count, 
lymphocyte count, PSAD, 
f/tPSA, biopsy results 

Data from 
551 patients. N/A 

0.846 0.771 0.639 
Multivariate LR 0.918 0.876 0.880 
Decision Tree (DT) 0.886 0.788 0.867 

Random Forest (RF) 0.898 0.818 0.840 
Support Vector 
Machine (SVM) 0.895 0.861 0.867 

2 Yeh et al., 
(2022) [25] 

Deep Neural 
Network (DNN) 

Essential biomarkers for 
prostate cancer (PCa) and 
obesity-specific PCa 

Microarray 
data for 
normal 
prostate cells 
(lean and 
obese 
groups), and 
lean and 
obese PCa 

N/A 0.990 0.949 N/A 

3 

E. Erdem 
and F. 
Bozkurt 
(2021) [30] 

K-Nearest Neighbor 
(KNN) 

Patient age, cancer volume, 
Gleason score, prostate 
weight, antigen, MRI 
images 

100 patients 
from DBCR 
dataset, 
Kaggle 
prostate 
cancer 
dataset, and 
PROSTATEx 
database 

0.860 0.833 0.830 0.830 

Support Vector 
Machines (SVM) 0.910 0.903 0.900 0.920 

Logistic Regression 0.810 0.847 0.830 0.920 
Naive Bayes (NB) 
Neural Networks, 0.880 0.862 0.870 0.760 

Random Forest (RF) 0.930 0.885 0.900 0.860 

Linear Regression 0.860 0.876 0.830 0.860 
Linear 
Discrimination 
Analysis (LDA) 

0.890 0.905 0.870 0.100 

Multi-Layer 
Perceptron (MLP) 0.970 0.958 0.970 0.920 

Multi-Layer 
Perceptron (MLP)-
Regressor 

0.900 0.903 0.900 0.920 

Deep Neural 
Network (DNN) 0.920 0.889 0.900 0.830 

4 J. Dai 
(2020) [31] 

Deep Neural 
Networks (DNNs) 

1. Age 
2. Number of self-reported 

non-cancer illnesses 
3. Number of operations, 

self-reported 
4. Other serious medical 

conditions/disability 
diagnosed by a doctor 

5. Gender 
6. Long-standing illness, 

disability or infirmity 
7. Sleeplessness/insomnia 
8. Water intake 
9. Sleep duration 
10. Illness, injury, 

bereavement, stress in 
last 2 years 

11. Overall health rating 
12. Frequency of stair 

climbing in last 4 
weeks 

13. Time spent watching 
television (TV) 

14. Snoring 

50,000 
participants 
extracted 
from UK 
Biobank 

0.956 

N/A 

0.957 0.933 

Convolutional Neural 
Networks (CNNs) 0.961 0.962 0.933 

Support Vector 
Machine (SVM) 0.957 0.959 0.918 

Random Forest (RF) 0.945 0.948 0.896 
Extra Trees 0.948 0.951 0.902 

Logistic Regression 0.919 

0.974 

0.920 0.920 
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15. Salad / raw vegetable 
intake 

16. Dried fruit intake 
17. Oily fish intake 
18. Non-oily fish intake 
19. Alcohol usually taken 

with meals 
20. Breastfed as a baby 
21. Comparative body size 

at age 10 
22. Comparative height size 

at age 10 
23. Maternal smoking 

around birth 
24. Mood swings 
25. Irritability 
26. Blood clot, DVT, 

bronchitis, emphysema, 
asthma, rhinitis, 
eczema, allergy 
diagnosed by doctor 

27. Types of transport used 
(excluding work) 

28. Duration of walks 
29. Duration of moderate 

activity 
30. Waist circumference 
31. Hip circumference 
32. Standing height 
33. Seated height 
34. Pulse rate, automated 

reading 
35. Townsend deprivation 

index at recruitment 
36. Diastolic blood 

pressure, automated 
reading 

37. Systolic blood pressure, 
automated reading 

38. Nitrogen dioxide air 
pollution 

39. Nitrogen oxide air 
pollution 

40. Particulate matter air 
pollution (pm10) 

41. Particulate matter air 
pollution (pm2.5) 

42. Particulate matter air 
pollution (pm2.5) 
absorbance 

43. Particulate matter air 
pollution 2.5-10um 

5 Toth et al., 
(2019) [26] 

Random forest,-based 
classifier 

DNA methylation changes, 
ZIC2 protein expression 

Discovery 
cohort  
(n = 70) 

N/A 

0.950 

N/A N/A ICGC cohort  
(n = 222) 0.771 

TCGA 
PRAD cohort 
(n = 477) 

0.637 
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TABLE I MACHINE LEARNING MODELS AND THEIR PERFORMANCE METRICS 
Sl. No. Year Model F-1 Score (%) AUC (%) Accuracy (%) Sensitivity (%) 

1 2022 

tPSA LR 

N/A 

0.846 0.771 0.639 
MLR 0.918 0.876 0.880 
DT 0.886 0.788 0.867 

RF 0.898 0.818 0.840 
SVM 0.895 0.861 0.867 

2 2022 DNN N/A 0.990 0.949 N/A 

3 2021 

KNN 0.860 0.833 0.830 0.830 
SVM 0.910 0.903 0.900 0.920 
LR 0.810 0.847 0.830 0.920 

NBNN 0.880 0.862 0.870 0.760 
RF 0.930 0.885 0.900 0.860 

LinReg 0.860 0.876 0.830 0.860 

LDA 0.890 0.905 0.870 0.100 
MLP 0.970 0.958 0.970 0.920 

MLP-R 0.900 0.903 0.900 0.920 

DNN 0.920 0.889 0.900 0.830 

4 2020 

DNN 0.956 

N/A 

0.957 0.933 
CNN 0.961 0.962 0.933 

SVM 0.957 0.959 0.918 
RF 0.945 0.948 0.896 
ET 0.948 0.951 0.902 

LR 0.919 0.974 0.920 0.920 
5 2019 RF N/A 0.950 N/A N/A 

 
Note: tPSA LR= Total Prostate-Specific Antigen Logistic 
Regression, MLP= Multi-Layer Perceptron, DT= Decision 
Tree, SVM= Support Vector Machine, KNN= K-Nearest 
Neighbor, RT= Random Forest, NBNN= Naive Bayes 
Neural Networks, LinReg= Linear Regression, LDA= Linear 
Discrimination Analysis, LR=Logistic Regression, MLP-
R=Multi-Layer Perceptron-Regressor, Convolutional Neural 
Networks (CNNs), ET= Extra Trees, Multivariate LR= 
Multivariate Logistic Regression, DNN= Deep Neural 
Network. 
 

Note: Models labeled with the same name (e.g., DNN) but 
different publication years (e.g., DNN (2020)) represent 
duplicate instances from separate studies. 
 

 
Fig. 2 Bar chart representing the F-1 Score of the models 

TABLE II F-1 SCORE DATA 
 

Model F-1 Score 

KNN 0.860 
SVM (2021) 0.910 
LR (2021) 0.810 

NBNN 0.880 
RF (2021) 0.930 
LinReg 0.860 

LDA 0.890 
MLP 0.970 
MLP-R 0.900 

DNN (2021) 0.920 
DNN (2020) 0.956 
CNN 0.961 

SVM (2020) 0.957 
RF (2020) 0.945 
ET 0.948 

LR (2020) 0.919 
 

Min = LR (0.810), Max = MLP (0.970), Mean F-1 Score = 0.914 
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TABLE III AUC DATA 
Model AUC 

tPSA LR 0.846 
MLR 0.918 
DT 0.886 

RF (2022) 0.898 
SVM (2022) 0.895 
DNN (2022) 0.990 

KNN 0.833 
SVM (2021) 0.903 
LR (2021) 0.847 

NBNN 0.862 
RF (2021) 0.885 
LinReg 0.876 

LDA 0.905 
MLP 0.958 
MLP-R 0.903 

DNN (2021) 0.889 
LR (2020) 0.974 
RF (2019) 0.950 

Min = KNN (0.833), Max = DNN (0.990), Mean Accuracy = 0.901 
 

TABLE IV ACCURACY DATA 
Model Accuracy 

tPSA LR 0.771 
MLR 0.876 
DT 0.788 

RF (2022) 0.818 
SVM (2022) 0.861 
DNN (2022) 0.949 

KNN 0.830 
SVM (2021) 0.900 
LR (2021) 0.830 

NBNN 0.870 
RF (2021) 0.900 
LR (2020) 0.920 

LinReg 0.830 
LDA 0.870 
MLP 0.970 

MLP-R 0.900 
DNN (2021) 0.900 
DNN (2020) 0.957 

CNN 0.962 
SVM (2020) 0.959 
RF (2020) 0.948 

ET 0.951 
Min = tPSA LR (0.771), Max = MLP (0.970), Mean Accuracy = 0.889 

 
Fig. 3 Bar chart representing the AUC value of the models 

 

 
Fig. 4 Bar chart representing the Accuracy of the models 

 
TABLE V SENSITIVITY DATA 

Model Sensitivity 
tPSA LR 0.639 
MLR 0.880 
DT 0.867 
RF (2022) 0.840 
SVM (2022) 0.867 
KNN 0.830 
SVM (2021) 0.920 
LR (2021) 0.920 
NBNN 0.760 
RF (2021) 0.860 
LinReg 0.860 
LDA 1.000 
MLP 0.920 
MLP-R 0.920 
DNN (2021) 0.830 
DNN (2020) 0.933 
CNN 0.933 
SVM (2020) 0.918 
RF (2020) 0.896 
ET 0.902 
LR (2020) 0.920 

Min = tPSA LR (0.639), Max = LDA (1.000), Mean Accuracy = 0.877 

53 AJEAT Vol.13 No.1 January-June 2024

Evaluating Machine Learning Models for Predicting Prostate Cancer Progression Using Lifestyle Factors: A Systematic 
Review and Meta-Analysis



 
Fig. 5 Bar chart representing the Sensitivity of the mode 

 
TABLE VI STATISTICAL REPRESENTATION OF THE 

PERFORMANCE METRICS 
Performance 

Metrics 
F-1 

Score AUC Accuracy Sensitivity 

N Valid 16 18 22 21 
Mean 0.914 0.901 0.889 0.877 
Std. Error of 
Mean 0.011 0.010 0.013 0.016 

Median 0.920 0.897 0.900 0.896 
Std. Deviation 0.045 0.044 0.060 0.074 
Variance 0.002 0.002 0.004 0.006 

Minimum 0.810 0.833 0.771 0.639 
Maximum 0.970 0.990 0.970 1.000 

 
In TABLE VII presents the performance metrics extracted 
from the studies included in the review. These metrics are 
crucial indicators of the effectiveness of machine learning 
models in evaluating lifestyle factors as predictive 
biomarkers for prostate cancer progression. 
 

1. F-1 Score: The F-1 Score is a metric that balances model 
recall and precision. A high F-1 Score indicates that 
recall - the ability to identify all positive - cases and 
precision - the accuracy of identifying positive cases - 
are well-balanced in the model [34]. The mean F-1 Score 
of 0.914 suggests that, on average, the machine learning 
models perform effectively in predicting prostate cancer 
progression based on lifestyle factors. The range of the 
F-1 Score, from 0.810 to 0.970, reflects the variation in 
performance across different models in the studies. 

2. AUC: The Area Under the Curve (AUC) measures a 
model’s ability to distinguish between positive and 
negative cases. A higher AUC value indicates better 
discriminatory ability, with a perfect value of 1 and 
random chance represented by 0.5 [35]. The mean AUC 
of 0.901 indicates strong discriminatory power in 
predicting prostate cancer progression. The range of 
AUC values, from 0.830 to 0.990, demonstrates 
variations in the predictive accuracy of the models 
evaluated. 

3. Accuracy: Accuracy measures the percentage of correct 
predictions made by the model out of all predictions. It 
reflects the overall performance of the model, regardless 
of class imbalance [36]. Higher accuracy values denote 
better overall predictive performance. On average, the 
models achieve an accuracy of 88.9%, with a mean 
accuracy of 0.889. 

4. Sensitivity: Sensitivity measures the model’s ability to 
detect positive cases accurately. A sensitivity value of 
1.000 indicates perfect detection of positive cases [37]. 
The mean sensitivity of 0.877 suggests that the models, 
on average, correctly identified 87.7% of positive cases. 
The sensitivity range, from 0.640 to 1.000, highlights 
differences in the models’ ability to detect prostate 
cancer progression across studies. 

 
The performance metrics detailed in Table VII provide 
valuable insights into the effectiveness of the machine 
learning models in predicting prostate cancer progression 
based on lifestyle factors. These metrics demonstrate the 
promising performance of the models in forecasting prostate 
cancer progression. 
 

IV. DISCUSSION 
 
The performance of machine learning techniques in 
predicting prostate cancer progression based on lifestyle 
factors was evaluated through a systematic review and meta-
analysis. The machine learning models exhibited high 
predictive capabilities, as illustrated by the mean values of 
their performance metrics: an accuracy of 0.889, sensitivity 
of 0.914, F-1 Score of 0.914, and AUC of 0.901. Among 
these models, the multi-layer perceptron (MLP) classifier 
was notably the most effective, with an accuracy of 97% and 
an AUC of 95.8%. These results demonstrate how machine 
learning methods can enhance risk assessment and treatment 
selection for prostate cancer. 
 
Furthermore, the findings highlight that lifestyle factors - 
such as physical activity, diet, and smoking habits - 
significantly impact cancer progression and are crucial for 
predicting prostate cancer. The analysis of performance 
metrics, combined with the outstanding performance of the 
MLP classifier, underscores the importance of incorporating 
lifestyle factors into prostate cancer progression predictions. 
This integration of machine learning techniques into clinical 
decision-making processes, including personalized treatment, 
shows promise for improving risk assessment and 
contributing to policy decisions related to cancer care. 
 
In conclusion, the results illustrate the efficacy of machine 
learning models in predicting prostate cancer progression 
based on lifestyle factors. They emphasize the importance of 
lifestyle factors in cancer prediction and highlight the 
potential for personalized risk assessment and clinical 
decision-making. These findings pave the way for further 
research into the practical application of these models in 
medical settings, as well as improvements in machine 
learning algorithms and predictive biomarkers. 
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V. CONCLUSION 
 
The results of the systematic study demonstrate how machine 
learning methods can enhance prostate cancer detection and 
treatment. The analysis of performance metrics underscores 
the significance of lifestyle factors in predicting prostate 
cancer progression, particularly highlighting the 
effectiveness of the multi-layer perceptron (MLP) classifier. 
The average performance metrics reveal that the machine 
learning models exhibit high predictive capabilities, 
emphasizing their potential to improve risk assessment and 
treatment selection for prostate cancer. The research findings 
are poised to significantly impact clinical decision-making, 
as machine learning techniques have shown the potential to 
influence personalized risk assessment and cancer care 
through their ability to analyze large datasets and predict 
patterns for cancer prognosis. Finally, the systematic review 
and meta-analysis have confirmed that lifestyle factors play 
a crucial role in the progression of prostate cancer, suggesting 
their importance as biomarkers for predicting cancer 
progression. The results also indicate that the machine 
learning models reviewed performed exceptionally well in 
predicting prostate cancer progression. Future research 
should focus on refining machine learning algorithms, 
validating predictive biomarkers, and exploring the practical 
implementation of these models in healthcare settings. 
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